🚀 印度尼西亚语音识别模型评估项目
本项目专注于在印度尼西亚语的Common Voice数据集上进行语音识别模型的评估,利用Wav2Vec2ForCTC
模型实现自动语音识别,为相关研究和应用提供了有效的评估方案。
🚀 快速开始
评估环境准备
在Common Voice印度尼西亚语测试集上进行评估,需要安装相关依赖库,以下是评估代码示例:
import torchaudio
from datasets import load_dataset, load_metric
from transformers import (
Wav2Vec2ForCTC,
Wav2Vec2Processor,
)
import torch
import re
import sys
model_name = "munggok/xlsr_indonesia"
device = "cuda"
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"]'
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
processor = Wav2Vec2Processor.from_pretrained(model_name)
ds = load_dataset("common_voice", "id", split="test", data_dir="./cv-corpus-6.1-2020-12-11")
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
数据处理
对数据集进行处理,包括音频重采样和文本清理:
def map_to_array(batch):
speech, _ = torchaudio.load(batch["path"])
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
batch["sampling_rate"] = resampler.new_freq
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
return batch
ds = ds.map(map_to_array)
模型预测
使用模型进行预测,并计算词错误率(WER):
def map_to_pred(batch):
features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)
batch["target"] = batch["sentence"]
return batch
result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys()))
wer = load_metric("wer")
print(wer.compute(predictions=result["predicted"], references=result["target"]))
评估结果
结果:25.7 %
📦 项目信息
属性 |
详情 |
数据集 |
Common Voice |
标签 |
语音、音频、自动语音识别、XLSR微调周 |
许可证 |
Apache-2.0 |