模型概述
模型特點
模型能力
使用案例
🚀 InternVL3-9B-Instruct
InternVL3-9B-Instruct 是一個先進的多模態大語言模型,在多模態感知、推理等能力上表現出色,還拓展了工具使用、GUI 代理等多模態能力,且文本性能也十分優秀。
🚀 快速開始
我們提供了使用 transformers
運行 InternVL3-9B
的示例代碼。
⚠️ 重要提示
請使用 transformers>=4.37.2 以確保模型正常工作。
模型加載
16 位(bf16 / fp16)
import torch
from transformers import AutoTokenizer, AutoModel
path = "OpenGVLab/InternVL3-9B"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval().cuda()
BNB 8 位量化
import torch
from transformers import AutoTokenizer, AutoModel
path = "OpenGVLab/InternVL3-9B"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
load_in_8bit=True,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval()
多 GPU
import math
import torch
from transformers import AutoTokenizer, AutoModel
def split_model(model_name):
device_map = {}
world_size = torch.cuda.device_count()
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
num_layers = config.llm_config.num_hidden_layers
# Since the first GPU will be used for ViT, treat it as half a GPU.
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
num_layers_per_gpu = [num_layers_per_gpu] * world_size
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f'language_model.model.layers.{layer_cnt}'] = i
layer_cnt += 1
device_map['vision_model'] = 0
device_map['mlp1'] = 0
device_map['language_model.model.tok_embeddings'] = 0
device_map['language_model.model.embed_tokens'] = 0
device_map['language_model.output'] = 0
device_map['language_model.model.norm'] = 0
device_map['language_model.model.rotary_emb'] = 0
device_map['language_model.lm_head'] = 0
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
return device_map
path = "OpenGVLab/InternVL3-9B"
device_map = split_model('InternVL3-9B')
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True,
device_map=device_map).eval()
使用 Transformers 進行推理
import math
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def split_model(model_name):
device_map = {}
world_size = torch.cuda.device_count()
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
num_layers = config.llm_config.num_hidden_layers
# Since the first GPU will be used for ViT, treat it as half a GPU.
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
num_layers_per_gpu = [num_layers_per_gpu] * world_size
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f'language_model.model.layers.{layer_cnt}'] = i
layer_cnt += 1
device_map['vision_model'] = 0
device_map['mlp1'] = 0
device_map['language_model.model.tok_embeddings'] = 0
device_map['language_model.model.embed_tokens'] = 0
device_map['language_model.output'] = 0
device_map['language_model.model.norm'] = 0
device_map['language_model.model.rotary_emb'] = 0
device_map['language_model.lm_head'] = 0
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
return device_map
# If you set `load_in_8bit=True`, you will need two 80GB GPUs.
# If you set `load_in_8bit=False`, you will need at least three 80GB GPUs.
path = 'OpenGVLab/InternVL3-9B'
device_map = split_model('InternVL3-9B')
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
load_in_8bit=False,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True,
device_map=device_map).eval()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
# set the max number of tiles in `max_num`
pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens=1024, do_sample=True)
# pure-text conversation (純文本對話)
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'Can you tell me a story?'
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# single-image single-round conversation (單圖單輪對話)
question = '<image>\nPlease describe the image shortly.'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}\nAssistant: {response}')
# single-image multi-round conversation (單圖多輪對話)
question = '<image>\nPlease describe the image in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'Please write a poem according to the image.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# multi-image multi-round conversation, combined images (多圖多輪對話,拼接圖像)
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
question = '<image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# multi-image multi-round conversation, separate images (多圖多輪對話,獨立圖像)
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list,
history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list,
history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# batch inference, single image per sample (單圖批處理)
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
responses = model.batch_chat(tokenizer, pixel_values,
num_patches_list=num_patches_list,
questions=questions,
generation_config=generation_config)
for question, response in zip(questions, responses):
print(f'User: {question}\nAssistant: {response}')
# video multi-round conversation (視頻多輪對話)
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
if bound:
start, end = bound[0], bound[1]
else:
start, end = -100000, 100000
start_idx = max(first_idx, round(start * fps))
end_idx = min(round(end * fps), max_frame)
seg_size = float(end_idx - start_idx) / num_segments
frame_indices = np.array([
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
for idx in range(num_segments)
])
return frame_indices
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
fps = float(vr.get_avg_fps())
pixel_values_list, num_patches_list = [], []
transform = build_transform(input_size=input_size)
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(tile) for tile in img]
pixel_values = torch.stack(pixel_values)
num_patches_list.append(pixel_values.shape[0])
pixel_values_list.append(pixel_values)
pixel_values = torch.cat(pixel_values_list)
return pixel_values, num_patches_list
video_path = './examples/red-panda.mp4'
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
pixel_values = pixel_values.to(torch.bfloat16).cuda()
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
question = video_prefix + 'What is the red panda doing?'
# Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'Describe this video in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
流式輸出
from transformers import TextIteratorStreamer
from threading import Thread
# Initialize the streamer
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
# Define the generation configuration
generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
# Start the model chat in a separate thread
thread = Thread(target=model.chat, kwargs=dict(
tokenizer=tokenizer, pixel_values=pixel_values, question=question,
history=None, return_history=False, generation_config=generation_config,
))
thread.start()
# Initialize an empty string to store the generated text
generated_text = ''
# Loop through the streamer to get the new text as it is generated
for new_text in streamer:
if new_text == model.conv_template.sep:
break
generated_text += new_text
print(new_text, end='', flush=True) # Print each new chunk of generated text on the same line
✨ 主要特性
- 多模態能力卓越:相比 InternVL 2.5,InternVL3 展現出更出色的多模態感知和推理能力,還將多模態能力拓展到工具使用、GUI 代理、工業圖像分析、3D 視覺感知等領域。
- 文本性能優秀:通過原生多模態預訓練,InternVL3 系列在整體文本性能上甚至優於 Qwen2.5 系列。
- 採用新的編碼技術:集成了 Variable Visual Position Encoding (V2PE),使模型具有更好的長上下文理解能力。
📚 詳細文檔
模型介紹
這是 InternVL3-9B 的 SFT 版本,經過了原生多模態預訓練和 SFT,但未經過 MPO。如果不確定使用哪個版本,請使用 InternVL3-9B 版本。
InternVL3 是一個先進的多模態大語言模型(MLLM)系列,整體性能優越。與 InternVL 2.5 相比,InternVL3 在多模態感知和推理能力上表現更出色,還進一步拓展了多模態能力。
InternVL3 家族
模型名稱 | 視覺部分 | 語言部分 | HF 鏈接 |
---|---|---|---|
InternVL3-1B | InternViT-300M-448px-V2_5 | Qwen2.5-0.5B | 🤗 link |
InternVL3-2B | InternViT-300M-448px-V2_5 | Qwen2.5-1.5B | 🤗 link |
InternVL3-8B | InternViT-300M-448px-V2_5 | Qwen2.5-7B | 🤗 link |
InternVL3-9B | InternViT-300M-448px-V2_5 | internlm3-8b-instruct | 🤗 link |
InternVL3-14B | InternViT-300M-448px-V2_5 | Qwen2.5-14B | 🤗 link |
InternVL3-38B | InternViT-6B-448px-V2_5 | Qwen2.5-32B | 🤗 link |
InternVL3-78B | InternViT-6B-448px-V2_5 | Qwen2.5-72B | 🤗 link |
模型架構
InternVL3 保留了與 InternVL 2.5 及其前身 InternVL 1.5 和 2.0 相同的模型架構,遵循 "ViT-MLP-LLM" 範式。在新版本中,使用隨機初始化的 MLP 投影器將新的增量預訓練的 InternViT 與各種預訓練的 LLM(包括 InternLM 3 和 Qwen 2.5)集成。
與之前的版本一樣,應用了像素重排操作,將視覺標記的數量減少到原來的四分之一。此外,採用了與 InternVL 1.5 類似的動態分辨率策略,將圖像劃分為 448×448 像素的圖塊。從 InternVL 2.0 開始,還增加了對多圖像和視頻數據的支持。
訓練策略
原生多模態預訓練
提出了一種 Native Multimodal Pre-Training 方法,將語言和視覺學習整合到一個預訓練階段。與先訓練純語言模型然後再適應處理其他模態的標準範式不同,該方法將多模態數據(如圖文、視頻文本或圖文交錯序列)與大規模文本語料庫交織在一起。這種統一的訓練方案使模型能夠同時學習語言和多模態表示,最終提高其處理視覺語言任務的能力,而無需單獨的對齊或橋接模塊。
監督微調
在這個階段,InternVL2.5 中提出的隨機 JPEG 壓縮、平方損失重新加權和多模態數據打包技術也被應用於 InternVL3 系列。InternVL3 的 SFT 階段與 InternVL2.5 相比,主要進步在於使用了更高質量和更多樣化的訓練數據。具體來說,進一步擴展了工具使用、3D 場景理解、GUI 操作、長上下文任務、視頻理解、科學圖表、創意寫作和多模態推理的訓練樣本。
混合偏好優化
在預訓練和 SFT 期間,模型根據之前的真實標記來預測下一個標記。然而,在推理期間,模型根據自己的先前輸出預測每個標記。真實標記和模型預測標記之間的這種差異會引入分佈偏移,這可能會損害模型的思維鏈(CoT)推理能力。為了緩解這個問題,採用了 MPO,它引入了來自正樣本和負樣本的額外監督,使模型響應分佈與真實分佈對齊,從而提高推理性能。
測試時縮放
測試時縮放已被證明是提高 LLM 和 MLLM 推理能力的有效方法。在這項工作中,使用 Best-of-N 評估策略,並使用 VisualPRM-8B 作為評判模型,為推理和數學評估選擇最佳響應。
多模態能力評估
- 多模態推理和數學:展示了模型在多模態推理和數學任務上的性能。
- OCR、圖表和文檔理解:體現了模型在這些方面的理解能力。
- 多圖像和現實世界理解:反映了模型對多圖像和現實場景的理解水平。
- 綜合多模態和幻覺評估:對模型的綜合多模態能力和幻覺情況進行評估。
- 視覺定位:評估模型的視覺定位能力。
- 多模態多語言理解:展示了模型在多語言環境下的多模態理解能力。
- 視頻理解:體現了模型對視頻內容的理解能力。
- GUI 定位:評估模型在 GUI 相關任務上的定位能力。
- 空間推理:反映了模型的空間推理能力。
語言能力評估
將 InternVL3 與 Qwen2.5 Chat 模型進行比較,Qwen2.5 相應的預訓練基礎模型被用作 InternVL3 語言組件的初始化。得益於原生多模態預訓練,InternVL3 系列在整體文本性能上甚至優於 Qwen2.5 系列。
消融研究
原生多模態預訓練
在 InternVL2-8B 模型上進行實驗,保持其架構、初始化參數和訓練數據完全不變。傳統上,InternVL2-8B 採用的訓練流程是先進行 MLP 預熱階段進行特徵對齊,然後進行指令調優階段。在實驗中,用原生多模態預訓練過程代替了傳統的 MLP 預熱階段。評估結果表明,經過原生多模態預訓練的模型在大多數基準測試中的性能與經過完整多階段訓練的 InternVL2-8B 基線相當。此外,在更高質量的數據上進行指令調優後,模型在評估的多模態任務中表現出進一步的性能提升。
混合偏好優化
使用 MPO 進行微調的模型在七個多模態推理基準測試中表現出比未使用 MPO 的模型更優越的推理性能。具體來說,InternVL3-78B 和 InternVL3-38B 分別比其對應模型高出 4.1 和 4.5 分。值得注意的是,MPO 使用的訓練數據是 SFT 使用數據的子集,這表明性能提升主要來自訓練算法而非訓練數據。
可變視覺位置編碼
引入 V2PE 導致大多數評估指標的性能顯著提升。此外,通過改變位置增量 \( \delta \) 進行的消融研究表明,即使對於主要涉及傳統上下文的任務,相對較小的 \( \delta \) 值也能實現最佳性能。
🔧 技術細節
模型架構
InternVL3 遵循 "ViT-MLP-LLM" 範式,使用隨機初始化的 MLP 投影器將新的增量預訓練的 InternViT 與各種預訓練的 LLM 集成。應用像素重排操作減少視覺標記數量,採用動態分辨率策略劃分圖像圖塊,並增加了對多圖像和視頻數據的支持。
訓練策略
原生多模態預訓練
將語言和視覺學習整合到一個預訓練階段,交織多模態數據和大規模文本語料庫,使模型同時學習語言和多模態表示。
監督微調
採用隨機 JPEG 壓縮、平方損失重新加權和多模態數據打包技術,使用更高質量和更多樣化的訓練數據。
混合偏好優化
引入 MPO 緩解推理時的分佈偏移問題,提高推理性能。
測試時縮放
使用 Best-of-N 評估策略和 VisualPRM-8B 作為評判模型,選擇最佳響應。
消融研究
通過實驗驗證了原生多模態預訓練、混合偏好優化和可變視覺位置編碼對模型性能的影響。
📦 安裝指南
微調
許多倉庫現在支持對 InternVL 系列模型進行微調,包括 InternVL、SWIFT、XTurner 等。請參考它們的文檔以獲取更多關於微調的詳細信息。
部署
LMDeploy
LMDeploy 是一個用於壓縮、部署和服務 LLM 和 VLM 的工具包。
# if lmdeploy<0.7.3, you need to explicitly set chat_template_config=ChatTemplateConfig(model_name='internvl2_5')
pip install lmdeploy>=0.7.3
示例代碼
from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
from lmdeploy.vl import load_image
model = 'OpenGVLab/InternVL3-9B'
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
response = pipe(('describe this image', image))
print(response.text)
多圖像推理
from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
from lmdeploy.vl import load_image
from lmdeploy.vl.constants import IMAGE_TOKEN
model = 'OpenGVLab/InternVL3-9B'
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
image_urls=[
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
]
images = [load_image(img_url) for img_url in image_urls]
# Numbering images improves multi-image conversations
response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
print(response.text)
批量提示推理
from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
from lmdeploy.vl import load_image
model = 'OpenGVLab/InternVL3-9B'
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
image_urls=[
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
]
prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
response = pipe(prompts)
print(response)
多輪對話
from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig, ChatTemplateConfig
from lmdeploy.vl import load_image
model = 'OpenGVLab/InternVL3-9B'
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
sess = pipe.chat(('describe this image', image), gen_config=gen_config)
print(sess.response.text)
sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
print(sess.response.text)
服務
lmdeploy serve api_server OpenGVLab/InternVL3-9B --chat-template internvl2_5 --server-port 23333 --tp 1
使用 OpenAI 風格的接口需要安裝 OpenAI:
pip install openai
from openai import OpenAI
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
model=model_name,
messages=[{
'role':
'user',
'content': [{
'type': 'text',
'text': 'describe this image',
}, {
'type': 'image_url',
'image_url': {
'url':
'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
},
}],
}],
temperature=0.8,
top_p=0.8)
print(response)
📄 許可證
本項目採用 MIT 許可證發佈。
引用
如果您在研究中發現本項目有用,請考慮引用:
@article{chen2024expanding,
title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
journal={arXiv preprint arXiv:2412.05271},
year={2024}
}
@article{wang2024mpo,
title={Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization},
author={Wang, Weiyun and Chen, Zhe and Wang, Wenhai and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Zhu, Jinguo and Zhu, Xizhou and Lu, Lewei and Qiao, Yu and Dai, Jifeng},
journal={arXiv preprint arXiv:2411.10442},
year={2024}
}
@article{chen2024far,
title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
journal={arXiv preprint arXiv:2404.16821},
year={2024}
}
@inproceedings{chen2024internvl,
title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={24185--24198},
year={2024}
}








