模型简介
模型特点
模型能力
使用案例
🚀 InternVL3-9B-Instruct
InternVL3-9B-Instruct 是一个先进的多模态大语言模型,在多模态感知、推理等能力上表现出色,还拓展了工具使用、GUI 代理等多模态能力,且文本性能也十分优秀。
🚀 快速开始
我们提供了使用 transformers
运行 InternVL3-9B
的示例代码。
⚠️ 重要提示
请使用 transformers>=4.37.2 以确保模型正常工作。
模型加载
16 位(bf16 / fp16)
import torch
from transformers import AutoTokenizer, AutoModel
path = "OpenGVLab/InternVL3-9B"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval().cuda()
BNB 8 位量化
import torch
from transformers import AutoTokenizer, AutoModel
path = "OpenGVLab/InternVL3-9B"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
load_in_8bit=True,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval()
多 GPU
import math
import torch
from transformers import AutoTokenizer, AutoModel
def split_model(model_name):
device_map = {}
world_size = torch.cuda.device_count()
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
num_layers = config.llm_config.num_hidden_layers
# Since the first GPU will be used for ViT, treat it as half a GPU.
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
num_layers_per_gpu = [num_layers_per_gpu] * world_size
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f'language_model.model.layers.{layer_cnt}'] = i
layer_cnt += 1
device_map['vision_model'] = 0
device_map['mlp1'] = 0
device_map['language_model.model.tok_embeddings'] = 0
device_map['language_model.model.embed_tokens'] = 0
device_map['language_model.output'] = 0
device_map['language_model.model.norm'] = 0
device_map['language_model.model.rotary_emb'] = 0
device_map['language_model.lm_head'] = 0
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
return device_map
path = "OpenGVLab/InternVL3-9B"
device_map = split_model('InternVL3-9B')
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True,
device_map=device_map).eval()
使用 Transformers 进行推理
import math
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def split_model(model_name):
device_map = {}
world_size = torch.cuda.device_count()
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
num_layers = config.llm_config.num_hidden_layers
# Since the first GPU will be used for ViT, treat it as half a GPU.
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
num_layers_per_gpu = [num_layers_per_gpu] * world_size
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f'language_model.model.layers.{layer_cnt}'] = i
layer_cnt += 1
device_map['vision_model'] = 0
device_map['mlp1'] = 0
device_map['language_model.model.tok_embeddings'] = 0
device_map['language_model.model.embed_tokens'] = 0
device_map['language_model.output'] = 0
device_map['language_model.model.norm'] = 0
device_map['language_model.model.rotary_emb'] = 0
device_map['language_model.lm_head'] = 0
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
return device_map
# If you set `load_in_8bit=True`, you will need two 80GB GPUs.
# If you set `load_in_8bit=False`, you will need at least three 80GB GPUs.
path = 'OpenGVLab/InternVL3-9B'
device_map = split_model('InternVL3-9B')
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
load_in_8bit=False,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True,
device_map=device_map).eval()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
# set the max number of tiles in `max_num`
pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens=1024, do_sample=True)
# pure-text conversation (纯文本对话)
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'Can you tell me a story?'
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# single-image single-round conversation (单图单轮对话)
question = '<image>\nPlease describe the image shortly.'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}\nAssistant: {response}')
# single-image multi-round conversation (单图多轮对话)
question = '<image>\nPlease describe the image in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'Please write a poem according to the image.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
question = '<image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list,
history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list,
history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# batch inference, single image per sample (单图批处理)
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
responses = model.batch_chat(tokenizer, pixel_values,
num_patches_list=num_patches_list,
questions=questions,
generation_config=generation_config)
for question, response in zip(questions, responses):
print(f'User: {question}\nAssistant: {response}')
# video multi-round conversation (视频多轮对话)
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
if bound:
start, end = bound[0], bound[1]
else:
start, end = -100000, 100000
start_idx = max(first_idx, round(start * fps))
end_idx = min(round(end * fps), max_frame)
seg_size = float(end_idx - start_idx) / num_segments
frame_indices = np.array([
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
for idx in range(num_segments)
])
return frame_indices
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
fps = float(vr.get_avg_fps())
pixel_values_list, num_patches_list = [], []
transform = build_transform(input_size=input_size)
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(tile) for tile in img]
pixel_values = torch.stack(pixel_values)
num_patches_list.append(pixel_values.shape[0])
pixel_values_list.append(pixel_values)
pixel_values = torch.cat(pixel_values_list)
return pixel_values, num_patches_list
video_path = './examples/red-panda.mp4'
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
pixel_values = pixel_values.to(torch.bfloat16).cuda()
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
question = video_prefix + 'What is the red panda doing?'
# Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'Describe this video in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
流式输出
from transformers import TextIteratorStreamer
from threading import Thread
# Initialize the streamer
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
# Define the generation configuration
generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
# Start the model chat in a separate thread
thread = Thread(target=model.chat, kwargs=dict(
tokenizer=tokenizer, pixel_values=pixel_values, question=question,
history=None, return_history=False, generation_config=generation_config,
))
thread.start()
# Initialize an empty string to store the generated text
generated_text = ''
# Loop through the streamer to get the new text as it is generated
for new_text in streamer:
if new_text == model.conv_template.sep:
break
generated_text += new_text
print(new_text, end='', flush=True) # Print each new chunk of generated text on the same line
✨ 主要特性
- 多模态能力卓越:相比 InternVL 2.5,InternVL3 展现出更出色的多模态感知和推理能力,还将多模态能力拓展到工具使用、GUI 代理、工业图像分析、3D 视觉感知等领域。
- 文本性能优秀:通过原生多模态预训练,InternVL3 系列在整体文本性能上甚至优于 Qwen2.5 系列。
- 采用新的编码技术:集成了 Variable Visual Position Encoding (V2PE),使模型具有更好的长上下文理解能力。
📚 详细文档
模型介绍
这是 InternVL3-9B 的 SFT 版本,经过了原生多模态预训练和 SFT,但未经过 MPO。如果不确定使用哪个版本,请使用 InternVL3-9B 版本。
InternVL3 是一个先进的多模态大语言模型(MLLM)系列,整体性能优越。与 InternVL 2.5 相比,InternVL3 在多模态感知和推理能力上表现更出色,还进一步拓展了多模态能力。
InternVL3 家族
模型名称 | 视觉部分 | 语言部分 | HF 链接 |
---|---|---|---|
InternVL3-1B | InternViT-300M-448px-V2_5 | Qwen2.5-0.5B | 🤗 link |
InternVL3-2B | InternViT-300M-448px-V2_5 | Qwen2.5-1.5B | 🤗 link |
InternVL3-8B | InternViT-300M-448px-V2_5 | Qwen2.5-7B | 🤗 link |
InternVL3-9B | InternViT-300M-448px-V2_5 | internlm3-8b-instruct | 🤗 link |
InternVL3-14B | InternViT-300M-448px-V2_5 | Qwen2.5-14B | 🤗 link |
InternVL3-38B | InternViT-6B-448px-V2_5 | Qwen2.5-32B | 🤗 link |
InternVL3-78B | InternViT-6B-448px-V2_5 | Qwen2.5-72B | 🤗 link |
模型架构
InternVL3 保留了与 InternVL 2.5 及其前身 InternVL 1.5 和 2.0 相同的模型架构,遵循 "ViT-MLP-LLM" 范式。在新版本中,使用随机初始化的 MLP 投影器将新的增量预训练的 InternViT 与各种预训练的 LLM(包括 InternLM 3 和 Qwen 2.5)集成。
与之前的版本一样,应用了像素重排操作,将视觉标记的数量减少到原来的四分之一。此外,采用了与 InternVL 1.5 类似的动态分辨率策略,将图像划分为 448×448 像素的图块。从 InternVL 2.0 开始,还增加了对多图像和视频数据的支持。
训练策略
原生多模态预训练
提出了一种 Native Multimodal Pre-Training 方法,将语言和视觉学习整合到一个预训练阶段。与先训练纯语言模型然后再适应处理其他模态的标准范式不同,该方法将多模态数据(如图文、视频文本或图文交错序列)与大规模文本语料库交织在一起。这种统一的训练方案使模型能够同时学习语言和多模态表示,最终提高其处理视觉语言任务的能力,而无需单独的对齐或桥接模块。
监督微调
在这个阶段,InternVL2.5 中提出的随机 JPEG 压缩、平方损失重新加权和多模态数据打包技术也被应用于 InternVL3 系列。InternVL3 的 SFT 阶段与 InternVL2.5 相比,主要进步在于使用了更高质量和更多样化的训练数据。具体来说,进一步扩展了工具使用、3D 场景理解、GUI 操作、长上下文任务、视频理解、科学图表、创意写作和多模态推理的训练样本。
混合偏好优化
在预训练和 SFT 期间,模型根据之前的真实标记来预测下一个标记。然而,在推理期间,模型根据自己的先前输出预测每个标记。真实标记和模型预测标记之间的这种差异会引入分布偏移,这可能会损害模型的思维链(CoT)推理能力。为了缓解这个问题,采用了 MPO,它引入了来自正样本和负样本的额外监督,使模型响应分布与真实分布对齐,从而提高推理性能。
测试时缩放
测试时缩放已被证明是提高 LLM 和 MLLM 推理能力的有效方法。在这项工作中,使用 Best-of-N 评估策略,并使用 VisualPRM-8B 作为评判模型,为推理和数学评估选择最佳响应。
多模态能力评估
- 多模态推理和数学:展示了模型在多模态推理和数学任务上的性能。
- OCR、图表和文档理解:体现了模型在这些方面的理解能力。
- 多图像和现实世界理解:反映了模型对多图像和现实场景的理解水平。
- 综合多模态和幻觉评估:对模型的综合多模态能力和幻觉情况进行评估。
- 视觉定位:评估模型的视觉定位能力。
- 多模态多语言理解:展示了模型在多语言环境下的多模态理解能力。
- 视频理解:体现了模型对视频内容的理解能力。
- GUI 定位:评估模型在 GUI 相关任务上的定位能力。
- 空间推理:反映了模型的空间推理能力。
语言能力评估
将 InternVL3 与 Qwen2.5 Chat 模型进行比较,Qwen2.5 相应的预训练基础模型被用作 InternVL3 语言组件的初始化。得益于原生多模态预训练,InternVL3 系列在整体文本性能上甚至优于 Qwen2.5 系列。
消融研究
原生多模态预训练
在 InternVL2-8B 模型上进行实验,保持其架构、初始化参数和训练数据完全不变。传统上,InternVL2-8B 采用的训练流程是先进行 MLP 预热阶段进行特征对齐,然后进行指令调优阶段。在实验中,用原生多模态预训练过程代替了传统的 MLP 预热阶段。评估结果表明,经过原生多模态预训练的模型在大多数基准测试中的性能与经过完整多阶段训练的 InternVL2-8B 基线相当。此外,在更高质量的数据上进行指令调优后,模型在评估的多模态任务中表现出进一步的性能提升。
混合偏好优化
使用 MPO 进行微调的模型在七个多模态推理基准测试中表现出比未使用 MPO 的模型更优越的推理性能。具体来说,InternVL3-78B 和 InternVL3-38B 分别比其对应模型高出 4.1 和 4.5 分。值得注意的是,MPO 使用的训练数据是 SFT 使用数据的子集,这表明性能提升主要来自训练算法而非训练数据。
可变视觉位置编码
引入 V2PE 导致大多数评估指标的性能显著提升。此外,通过改变位置增量 \( \delta \) 进行的消融研究表明,即使对于主要涉及传统上下文的任务,相对较小的 \( \delta \) 值也能实现最佳性能。
🔧 技术细节
模型架构
InternVL3 遵循 "ViT-MLP-LLM" 范式,使用随机初始化的 MLP 投影器将新的增量预训练的 InternViT 与各种预训练的 LLM 集成。应用像素重排操作减少视觉标记数量,采用动态分辨率策略划分图像图块,并增加了对多图像和视频数据的支持。
训练策略
原生多模态预训练
将语言和视觉学习整合到一个预训练阶段,交织多模态数据和大规模文本语料库,使模型同时学习语言和多模态表示。
监督微调
采用随机 JPEG 压缩、平方损失重新加权和多模态数据打包技术,使用更高质量和更多样化的训练数据。
混合偏好优化
引入 MPO 缓解推理时的分布偏移问题,提高推理性能。
测试时缩放
使用 Best-of-N 评估策略和 VisualPRM-8B 作为评判模型,选择最佳响应。
消融研究
通过实验验证了原生多模态预训练、混合偏好优化和可变视觉位置编码对模型性能的影响。
📦 安装指南
微调
许多仓库现在支持对 InternVL 系列模型进行微调,包括 InternVL、SWIFT、XTurner 等。请参考它们的文档以获取更多关于微调的详细信息。
部署
LMDeploy
LMDeploy 是一个用于压缩、部署和服务 LLM 和 VLM 的工具包。
# if lmdeploy<0.7.3, you need to explicitly set chat_template_config=ChatTemplateConfig(model_name='internvl2_5')
pip install lmdeploy>=0.7.3
示例代码
from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
from lmdeploy.vl import load_image
model = 'OpenGVLab/InternVL3-9B'
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
response = pipe(('describe this image', image))
print(response.text)
多图像推理
from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
from lmdeploy.vl import load_image
from lmdeploy.vl.constants import IMAGE_TOKEN
model = 'OpenGVLab/InternVL3-9B'
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
image_urls=[
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
]
images = [load_image(img_url) for img_url in image_urls]
# Numbering images improves multi-image conversations
response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
print(response.text)
批量提示推理
from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
from lmdeploy.vl import load_image
model = 'OpenGVLab/InternVL3-9B'
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
image_urls=[
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
]
prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
response = pipe(prompts)
print(response)
多轮对话
from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig, ChatTemplateConfig
from lmdeploy.vl import load_image
model = 'OpenGVLab/InternVL3-9B'
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
sess = pipe.chat(('describe this image', image), gen_config=gen_config)
print(sess.response.text)
sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
print(sess.response.text)
服务
lmdeploy serve api_server OpenGVLab/InternVL3-9B --chat-template internvl2_5 --server-port 23333 --tp 1
使用 OpenAI 风格的接口需要安装 OpenAI:
pip install openai
from openai import OpenAI
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
model=model_name,
messages=[{
'role':
'user',
'content': [{
'type': 'text',
'text': 'describe this image',
}, {
'type': 'image_url',
'image_url': {
'url':
'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
},
}],
}],
temperature=0.8,
top_p=0.8)
print(response)
📄 许可证
本项目采用 MIT 许可证发布。
引用
如果您在研究中发现本项目有用,请考虑引用:
@article{chen2024expanding,
title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
journal={arXiv preprint arXiv:2412.05271},
year={2024}
}
@article{wang2024mpo,
title={Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization},
author={Wang, Weiyun and Chen, Zhe and Wang, Wenhai and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Zhu, Jinguo and Zhu, Xizhou and Lu, Lewei and Qiao, Yu and Dai, Jifeng},
journal={arXiv preprint arXiv:2411.10442},
year={2024}
}
@article{chen2024far,
title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
journal={arXiv preprint arXiv:2404.16821},
year={2024}
}
@inproceedings{chen2024internvl,
title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={24185--24198},
year={2024}
}








