🚀 resnet-152-fv-finetuned-memess
本模型是 microsoft/resnet-152 在 imagefolder 數據集上的微調版本。它在評估集上取得了以下結果,可有效用於圖像分類任務,為圖像分類領域提供了一個性能良好的解決方案。
🚀 快速開始
此模型是 microsoft/resnet-152 在 imagefolder 數據集上的微調版本。它在評估集上取得了以下結果:
- 損失值:0.6281
- 準確率:0.7674
- 精確率:0.7651
- 召回率:0.7674
- F1值:0.7647
📄 許可證
本項目採用 Apache-2.0 許可證。
📋 模型信息
屬性 |
詳情 |
模型類型 |
resnet-152-fv-finetuned-memess |
訓練數據 |
imagefolder 數據集 |
評估指標 |
準確率、精確率、召回率、F1值 |
🔧 訓練過程
訓練超參數
訓練過程中使用了以下超參數:
- 學習率:0.00012
- 訓練批次大小:64
- 評估批次大小:64
- 隨機種子:42
- 梯度累積步數:4
- 總訓練批次大小:256
- 優化器:Adam(β1 = 0.9,β2 = 0.999,ε = 1e-08)
- 學習率調度器類型:線性
- 學習率調度器熱身比例:0.1
- 訓練輪數:20
訓練結果
訓練損失 |
輪數 |
步數 |
驗證損失 |
準確率 |
精確率 |
召回率 |
F1值 |
1.5902 |
0.99 |
20 |
1.5519 |
0.4938 |
0.3491 |
0.4938 |
0.3529 |
1.4694 |
1.99 |
40 |
1.3730 |
0.4892 |
0.4095 |
0.4892 |
0.3222 |
1.3129 |
2.99 |
60 |
1.2052 |
0.5301 |
0.3504 |
0.5301 |
0.4005 |
1.1831 |
3.99 |
80 |
1.1142 |
0.5587 |
0.4077 |
0.5587 |
0.4444 |
1.0581 |
4.99 |
100 |
0.9930 |
0.6012 |
0.5680 |
0.6012 |
0.5108 |
0.9464 |
5.99 |
120 |
0.9263 |
0.6507 |
0.6200 |
0.6507 |
0.6029 |
0.8581 |
6.99 |
140 |
0.8400 |
0.6917 |
0.6645 |
0.6917 |
0.6638 |
0.7739 |
7.99 |
160 |
0.7829 |
0.7087 |
0.6918 |
0.7087 |
0.6845 |
0.6762 |
8.99 |
180 |
0.7512 |
0.7318 |
0.7206 |
0.7318 |
0.7189 |
0.6162 |
9.99 |
200 |
0.7409 |
0.7264 |
0.7244 |
0.7264 |
0.7241 |
0.5546 |
10.99 |
220 |
0.6936 |
0.7465 |
0.7429 |
0.7465 |
0.7395 |
0.4633 |
11.99 |
240 |
0.6779 |
0.7473 |
0.7393 |
0.7473 |
0.7412 |
0.4373 |
12.99 |
260 |
0.6736 |
0.7573 |
0.7492 |
0.7573 |
0.7523 |
0.4074 |
13.99 |
280 |
0.6534 |
0.7566 |
0.7516 |
0.7566 |
0.7528 |
0.39 |
14.99 |
300 |
0.6521 |
0.7651 |
0.7603 |
0.7651 |
0.7608 |
0.3766 |
15.99 |
320 |
0.6499 |
0.7682 |
0.7607 |
0.7682 |
0.7630 |
0.3507 |
16.99 |
340 |
0.6497 |
0.7697 |
0.7686 |
0.7697 |
0.7686 |
0.3589 |
17.99 |
360 |
0.6519 |
0.7535 |
0.7485 |
0.7535 |
0.7502 |
0.3261 |
18.99 |
380 |
0.6449 |
0.7589 |
0.7597 |
0.7589 |
0.7585 |
0.3234 |
19.99 |
400 |
0.6281 |
0.7674 |
0.7651 |
0.7674 |
0.7647 |
框架版本
- Transformers 4.24.0.dev0
- Pytorch 1.11.0+cu102
- Datasets 2.6.1.dev0
- Tokenizers 0.13.1