Vit Base Game Icons
V
Vit Base Game Icons
由chromefan開發
基於ViT架構的圖像分類模型,在遊戲廣告數據集上微調
下載量 18
發布時間 : 3/16/2023
模型概述
該模型是基於google/vit-base-patch16-224-in21k預訓練模型,在遊戲廣告圖像數據集上微調的圖像分類模型。主要用於遊戲廣告圖像的分類任務。
模型特點
基於ViT架構
使用Vision Transformer(ViT)架構,能夠有效處理圖像數據
遷移學習
基於預訓練模型微調,適用於特定領域的圖像分類任務
模型能力
圖像分類
遊戲廣告識別
使用案例
廣告分析
遊戲廣告分類
對遊戲廣告圖像進行分類識別
評估準確率30.24%
🚀 game - ad - 0306_outputs
該模型是基於 google/vit - base - patch16 - 224 - in21k 在 ./data/games - ad - 0306
數據集上微調得到的圖像分類模型,可用於圖像分類相關任務。
🚀 快速開始
該模型可用於圖像分類任務,在評估集上取得了如下結果:
- 損失值:2.6235
- 準確率:0.3024
🔧 技術細節
訓練超參數
訓練過程中使用了以下超參數:
- 學習率:2e - 05
- 訓練批次大小:16
- 評估批次大小:16
- 隨機種子:13373
- 優化器:Adam,其中
betas=(0.9, 0.999)
,epsilon = 1e - 08
- 學習率調度器類型:線性
- 訓練輪數:1000.0
訓練結果
訓練損失 | 輪數 | 步數 | 驗證損失 | 準確率 |
---|---|---|---|---|
3.2891 | 1.0 | 103 | 3.0266 | 0.2165 |
2.9971 | 2.0 | 206 | 2.9194 | 0.2302 |
2.9151 | 3.0 | 309 | 2.8731 | 0.2474 |
2.8579 | 4.0 | 412 | 2.8072 | 0.2715 |
2.7768 | 5.0 | 515 | 2.7918 | 0.2577 |
2.7184 | 6.0 | 618 | 2.7296 | 0.2818 |
2.648 | 7.0 | 721 | 2.7044 | 0.2921 |
2.5884 | 8.0 | 824 | 2.7190 | 0.2680 |
2.5146 | 9.0 | 927 | 2.6942 | 0.2784 |
2.4384 | 10.0 | 1030 | 2.6877 | 0.2921 |
2.442 | 11.0 | 1133 | 2.6412 | 0.2818 |
2.3099 | 12.0 | 1236 | 2.6331 | 0.2852 |
2.2685 | 13.0 | 1339 | 2.6451 | 0.2990 |
2.182 | 14.0 | 1442 | 2.6927 | 0.2715 |
2.1421 | 15.0 | 1545 | 2.6615 | 0.3162 |
2.0483 | 16.0 | 1648 | 2.6500 | 0.3230 |
1.9884 | 17.0 | 1751 | 2.6527 | 0.2990 |
1.9316 | 18.0 | 1854 | 2.6736 | 0.2990 |
1.8785 | 19.0 | 1957 | 2.6391 | 0.2921 |
1.788 | 20.0 | 2060 | 2.7002 | 0.3127 |
1.7115 | 21.0 | 2163 | 2.8321 | 0.2715 |
1.6929 | 22.0 | 2266 | 2.6235 | 0.3024 |
1.6239 | 23.0 | 2369 | 2.6378 | 0.3058 |
1.5387 | 24.0 | 2472 | 2.6888 | 0.3127 |
1.5095 | 25.0 | 2575 | 2.6888 | 0.3127 |
1.4153 | 26.0 | 2678 | 2.6771 | 0.2715 |
1.4254 | 27.0 | 2781 | 2.7354 | 0.2887 |
1.3351 | 28.0 | 2884 | 2.7175 | 0.2990 |
1.2955 | 29.0 | 2987 | 2.7679 | 0.2818 |
1.2232 | 30.0 | 3090 | 2.7784 | 0.2921 |
1.2115 | 31.0 | 3193 | 2.8496 | 0.2749 |
1.1656 | 32.0 | 3296 | 2.7899 | 0.2818 |
1.1419 | 33.0 | 3399 | 2.7646 | 0.2715 |
1.0481 | 34.0 | 3502 | 2.8416 | 0.2715 |
0.9763 | 35.0 | 3605 | 2.8370 | 0.3024 |
0.9452 | 36.0 | 3708 | 2.7904 | 0.2955 |
0.9178 | 37.0 | 3811 | 2.8309 | 0.2715 |
0.9115 | 38.0 | 3914 | 2.8584 | 0.3093 |
0.8472 | 39.0 | 4017 | 2.9066 | 0.2612 |
0.8323 | 40.0 | 4120 | 2.8630 | 0.2921 |
0.7622 | 41.0 | 4223 | 3.0020 | 0.2680 |
0.7531 | 42.0 | 4326 | 2.8885 | 0.2921 |
0.7054 | 43.0 | 4429 | 2.8820 | 0.2818 |
0.685 | 44.0 | 4532 | 2.8764 | 0.3162 |
0.7206 | 45.0 | 4635 | 2.8659 | 0.3162 |
0.6304 | 46.0 | 4738 | 2.9537 | 0.2887 |
0.6369 | 47.0 | 4841 | 2.9660 | 0.2509 |
0.6161 | 48.0 | 4944 | 3.1112 | 0.2543 |
0.618 | 49.0 | 5047 | 2.9729 | 0.2990 |
0.556 | 50.0 | 5150 | 2.9870 | 0.2921 |
0.5314 | 51.0 | 5253 | 2.9934 | 0.3093 |
0.5502 | 52.0 | 5356 | 2.9379 | 0.2818 |
0.4958 | 53.0 | 5459 | 3.0344 | 0.3024 |
0.4896 | 54.0 | 5562 | 2.9924 | 0.2749 |
0.4803 | 55.0 | 5665 | 3.0161 | 0.3127 |
0.4554 | 56.0 | 5768 | 3.0221 | 0.2818 |
0.4591 | 57.0 | 5871 | 3.0461 | 0.3024 |
0.4349 | 58.0 | 5974 | 3.1377 | 0.3265 |
0.4127 | 59.0 | 6077 | 3.0169 | 0.2955 |
0.3973 | 60.0 | 6180 | 3.0338 | 0.2818 |
0.4109 | 61.0 | 6283 | 3.0638 | 0.2818 |
0.3872 | 62.0 | 6386 | 3.0810 | 0.2818 |
0.3693 | 63.0 | 6489 | 3.2003 | 0.2715 |
0.3457 | 64.0 | 6592 | 3.0843 | 0.2990 |
0.3521 | 65.0 | 6695 | 3.1623 | 0.3058 |
0.3625 | 66.0 | 6798 | 3.0036 | 0.3299 |
0.3339 | 67.0 | 6901 | 3.2389 | 0.2921 |
0.3378 | 68.0 | 7004 | 3.2493 | 0.2990 |
0.2981 | 69.0 | 7107 | 3.1308 | 0.2955 |
0.3023 | 70.0 | 7210 | 3.2455 | 0.3093 |
0.3076 | 71.0 | 7313 | 3.2725 | 0.2887 |
0.3201 | 72.0 | 7416 | 3.2563 | 0.2887 |
0.3083 | 73.0 | 7519 | 3.2520 | 0.2921 |
0.2906 | 74.0 | 7622 | 3.3344 | 0.3093 |
0.2721 | 75.0 | 7725 | 3.1952 | 0.2852 |
0.2873 | 76.0 | 7828 | 3.2529 | 0.3058 |
0.278 | 77.0 | 7931 | 3.3428 | 0.2818 |
0.2573 | 78.0 | 8034 | 3.3216 | 0.2784 |
0.2578 | 79.0 | 8137 | 3.4178 | 0.2955 |
0.2774 | 80.0 | 8240 | 3.3449 | 0.2818 |
0.2762 | 81.0 | 8343 | 3.3452 | 0.2749 |
0.2504 | 82.0 | 8446 | 3.5792 | 0.2955 |
0.2552 | 83.0 | 8549 | 3.3478 | 0.2818 |
0.2541 | 84.0 | 8652 | 3.4902 | 0.2784 |
0.2616 | 85.0 | 8755 | 3.2829 | 0.3127 |
0.2079 | 86.0 | 8858 | 3.5287 | 0.3162 |
0.2538 | 87.0 | 8961 | 3.4731 | 0.3196 |
0.2485 | 88.0 | 9064 | 3.5998 | 0.2646 |
0.2714 | 89.0 | 9167 | 3.4567 | 0.2921 |
0.232 | 90.0 | 9270 | 3.5061 | 0.2818 |
0.2577 | 91.0 | 9373 | 3.5370 | 0.2921 |
0.2232 | 92.0 | 9476 | 3.5062 | 0.2509 |
0.2351 | 93.0 | 9579 | 3.5592 | 0.2784 |
0.2299 | 94.0 | 9682 | 3.5167 | 0.3333 |
0.2415 | 95.0 | 9785 | 3.6283 | 0.2887 |
0.2265 | 96.0 | 9888 | 3.4819 | 0.2852 |
0.2448 | 97.0 | 9991 | 3.5793 | 0.2990 |
0.2141 | 98.0 | 10094 | 3.5728 | 0.2887 |
0.1979 | 99.0 | 10197 | 3.4685 | 0.2921 |
0.2077 | 100.0 | 10300 | 3.5586 | 0.3230 |
0.1854 | 101.0 | 10403 | 3.5650 | 0.3162 |
0.2017 | 102.0 | 10506 | 3.4760 | 0.2921 |
0.2119 | 103.0 | 10609 | 3.5531 | 0.2784 |
0.2314 | 104.0 | 10712 | 3.5118 | 0.3024 |
0.212 | 105.0 | 10815 | 3.5496 | 0.3196 |
0.197 | 106.0 | 10918 | 3.6080 | 0.2543 |
0.2067 | 107.0 | 11021 | 3.6217 | 0.2887 |
0.1896 | 108.0 | 11124 | 3.6446 | 0.3230 |
0.198 | 109.0 | 11227 | 3.7699 | 0.2784 |
0.2152 | 110.0 | 11330 | 3.6709 | 0.3162 |
0.2121 | 111.0 | 11433 | 3.6266 | 0.3368 |
0.1869 | 112.0 | 11536 | 3.6681 | 0.2955 |
0.1927 | 113.0 | 11639 | 3.7305 | 0.3162 |
0.2259 | 114.0 | 11742 | 3.6302 | 0.3127 |
0.1809 | 115.0 | 11845 | 3.6301 | 0.3093 |
0.2071 | 116.0 | 11948 | 3.7288 | 0.3127 |
0.1977 | 117.0 | 12051 | 3.6467 | 0.3058 |
0.1902 | 118.0 | 12154 | 3.7039 | 0.3093 |
0.1996 | 119.0 | 12257 | 3.9013 | 0.3093 |
0.2122 | 120.0 | 12360 | 3.8228 | 0.2990 |
0.1702 | 121.0 | 12463 | 3.7118 | 0.3162 |
0.1889 | 122.0 | 12566 | 3.7211 | 0.3162 |
0.1857 | 123.0 | 12669 | 3.8894 | 0.2509 |
0.2003 | 124.0 | 12772 | 3.6575 | 0.3093 |
0.202 | 125.0 | 12875 | 3.7925 | 0.3333 |
0.1722 | 126.0 | 12978 | 3.8188 | 0.2818 |
0.1716 | 127.0 | 13081 | 3.9584 | 0.3162 |
0.1598 | 128.0 | 13184 | 3.7732 | 0.3265 |
0.1825 | 129.0 | 13287 | 3.8038 | 0.3196 |
0.1716 | 130.0 | 13390 | 3.7606 | 0.3196 |
0.179 | 131.0 | 13493 | 3.7458 | 0.2955 |
0.1817 | 132.0 | 13596 | 3.8413 | 0.2955 |
0.1606 | 133.0 | 13699 | 3.8766 | 0.3196 |
0.1625 | 134.0 | 13802 | 3.8188 | 0.3230 |
0.1622 | 135.0 | 13905 | 3.7223 | 0.2955 |
0.1852 | 136.0 | 14008 | 3.7774 | 0.3024 |
0.1671 | 137.0 | 14111 | 3.8407 | 0.2612 |
0.1862 | 138.0 | 14214 | 3.7442 | 0.3196 |
0.1808 | 139.0 | 14317 | 3.8458 | 0.3093 |
0.1375 | 140.0 | 14420 | 3.7372 | 0.3024 |
0.1876 | 141.0 | 14523 | 3.9925 | 0.2990 |
0.1693 | 142.0 | 14626 | 3.9364 | 0.3058 |
0.1719 | 143.0 | 14729 | 3.9149 | 0.2818 |
0.1406 | 144.0 | 14832 | 3.8603 | 0.2955 |
0.1709 | 145.0 | 14935 | 3.9216 | 0.3196 |
0.1794 | 146.0 | 15038 | 3.8934 | 0.3058 |
0.1455 | 147.0 | 15141 | 4.0086 | 0.2784 |
0.1959 | 148.0 | 15244 | 3.9358 | 0.3024 |
0.1664 | 149.0 | 15347 | 3.9775 | 0.2921 |
0.1455 | 150.0 | 15450 | 3.9304 | 0.2990 |
0.1819 | 151.0 | 15553 | 4.0299 | 0.2715 |
0.1532 | 152.0 | 15656 | 4.1219 | 0.2680 |
0.1638 | 153.0 | 15759 | 4.1465 | 0.3093 |
0.1579 | 154.0 | 15862 | 4.0596 | 0.2955 |
0.1668 | 155.0 | 15965 | 4.0857 | 0.3127 |
0.1401 | 156.0 | 16068 | 4.1669 | 0.2921 |
0.1452 | 157.0 | 16171 | 4.0430 | 0.2887 |
0.1568 | 158.0 | 16274 | 4.0157 | 0.2990 |
0.1771 | 159.0 | 16377 | 4.0770 | 0.3093 |
0.1383 | 160.0 | 16480 | 4.0888 | 0.2680 |
0.1572 | 161.0 | 16583 | 4.2271 | 0.2646 |
0.1472 | 162.0 | 16686 | 4.0215 | 0.2852 |
0.1534 | 163.0 | 16789 | 4.2248 | 0.3058 |
0.136 | 164.0 | 16892 | 4.2159 | 0.2852 |
0.1525 | 165.0 | 16995 | 4.0565 | 0.2990 |
0.1418 | 166.0 | 17098 | 4.1175 | 0.2852 |
0.1374 | 167.0 | 17201 | 4.1708 | 0.2921 |
0.1538 | 168.0 | 17304 | 4.2566 | 0.2784 |
0.1365 | 169.0 | 17407 | 4.3063 | 0.2577 |
0.1661 | 170.0 | 17510 | 4.2231 | 0.2887 |
0.1278 | 171.0 | 17613 | 4.3125 | 0.2646 |
0.1418 | 172.0 | 17716 | 4.3337 | 0.2646 |
0.1538 | 173.0 | 17819 | 4.3129 | 0.2852 |
0.1315 | 174.0 | 17922 | 4.3102 | 0.2680 |
0.128 | 175.0 | 18025 | 4.2853 | 0.2749 |
0.1398 | 176.0 | 18128 | 4.1560 | 0.2715 |
0.1525 | 177.0 | 18231 | 4.1812 | 0.2955 |
0.1603 | 178.0 | 18334 | 4.1262 | 0.3093 |
0.1412 | 179.0 | 18437 | 4.2778 | 0.2887 |
0.1521 | 180.0 | 18540 | 4.2881 | 0.2680 |
0.1404 | 181.0 | 18643 | 4.3147 | 0.2852 |
0.1468 | 182.0 | 18746 | 4.2042 | 0.2749 |
0.1448 | 183.0 | 18849 | 4.2110 | 0.2784 |
0.1299 | 184.0 | 18952 | 4.2314 | 0.2921 |
0.1361 | 185.0 | 19055 | 4.2993 | 0.2749 |
0.1455 | 186.0 | 19158 | 4.3509 | 0.3058 |
0.1345 | 187.0 | 19261 | 4.2828 | 0.2921 |
0.1394 | 188.0 | 19364 | 4.1001 | 0.3093 |
0.1415 | 189.0 | 19467 | 4.2179 | 0.2955 |
0.1235 | 190.0 | 19570 | 4.2963 | 0.3093 |
0.1373 | 191.0 | 19673 | 4.1833 | 0.2715 |
0.1323 | 192.0 | 19776 | 4.3057 | 0.2852 |
0.1188 | 193.0 | 19879 | 4.3819 | 0.2749 |
0.1528 | 194.0 | 19982 | 4.3091 | 0.2749 |
0.1365 | 195.0 | 20085 | 4.3870 | 0.2887 |
0.1187 | 196.0 | 20188 | 4.2303 | 0.2715 |
0.1409 | 197.0 | 20291 | 4.2344 | 0.2784 |
0.1346 | 198.0 | 20394 | 4.0637 | 0.3162 |
0.1449 | 199.0 | 20497 | 4.3022 | 0.2852 |
0.1415 | 200.0 | 20600 | 4.2672 | 0.2990 |
0.1283 | 201.0 | 20703 | 4.2363 | 0.2749 |
0.1469 | 202.0 | 20806 | 4.2714 | 0.2990 |
0.1288 | 203.0 | 20909 | 4.3246 | 0.2818 |
0.1334 | 204.0 | 21012 | 4.1711 | 0.2887 |
0.1419 | 205.0 | 21115 | 4.3263 | 0.2784 |
0.1395 | 206.0 | 21218 | 4.2855 | 0.2990 |
0.1255 | 207.0 | 21321 | 4.4301 | 0.2474 |
0.1288 | 208.0 | 21424 | 4.3735 | 0.2955 |
0.1395 | 209.0 | 21527 | 4.3549 | 0.2852 |
0.1144 | 210.0 | 21630 | 4.4569 | 0.2715 |
0.1185 | 211.0 | 21733 | 4.5008 | 0.2921 |
0.1578 | 212.0 | 21836 | 4.2313 | 0.2818 |
0.1434 | 213.0 | 21939 | 4.4445 | 0.2715 |
0.1147 | 214.0 | 22042 | 4.4329 | 0.2818 |
0.1239 | 215.0 | 22145 | 4.4102 | 0.2715 |
0.1315 | 216.0 | 22248 | 4.2503 | 0.2955 |
0.1413 | 217.0 | 22351 | 4.5559 | 0.2955 |
0.1137 | 218.0 | 22454 | 4.4504 | 0.2990 |
0.1412 | 219.0 | 22557 | 4.3377 | 0.3058 |
0.1051 | 220.0 | 22660 | 4.5250 | 0.2852 |
0.1314 | 221.0 | 22763 | 4.4539 | 0.2646 |
0.1284 | 222.0 | 22866 | 4.3481 | 0.2921 |
0.1159 | 223.0 | 22969 | 4.4284 | 0.3127 |
0.1219 | 224.0 | 23072 | 4.5069 | 0.2749 |
0.1183 | 225.0 | 23175 | 4.5461 | 0.2990 |
0.1172 | 226.0 | 23278 | 4.3986 | 0.2921 |
0.1216 | 227.0 | 23381 | 4.5154 | 0.3127 |
0.1207 | 228.0 | 23484 | 4.4848 | 0.2887 |
0.1303 | 229.0 | 23587 | 4.3925 | 0.2921 |
0.1238 | 230.0 | 23690 | 4.3748 | 0.2990 |
0.1126 | 231.0 | 23793 | 4.4806 | 0.3127 |
0.1227 | 232.0 | 23896 | 4.4439 | 0.2921 |
0.1146 | 233.0 | 23999 | 4.5228 | 0.2921 |
0.1168 | 234.0 | 24102 | 4.5614 | 0.2887 |
0.1219 | 235.0 | 24205 | 4.4129 | 0.2921 |
0.1181 | 236.0 | 24308 | 4.5444 | 0.2990 |
0.1167 | 237.0 | 24411 | 4.4038 | 0.2749 |
0.1173 | 238.0 | 24514 | 4.3967 | 0.3230 |
0.1052 | 239.0 | 24617 | 4.5055 | 0.2887 |
0.1216 | 240.0 | 24720 | 4.5693 | 0.3024 |
0.1242 | 241.0 | 24823 | 4.4906 | 0.2852 |
0.1553 | 242.0 | 24926 | 4.4971 | 0.2990 |
0.1377 | 243.0 | 25029 | 4.4536 | 0.2818 |
0.1126 | 244.0 | 25132 | 4.5324 | 0.2852 |
0.1321 | 245.0 | 25235 | 4.8037 | 0.2646 |
0.115 | 246.0 | 25338 | 4.6682 | 0.2715 |
0.1311 | 247.0 | 25441 | 4.6374 | 0.3196 |
0.1224 | 248.0 | 25544 | 4.7803 | 0.2680 |
0.1291 | 249.0 | 25647 | 4.6564 | 0.3093 |
0.1138 | 250.0 | 25750 | 4.5188 | 0.3024 |
0.1159 | 251.0 | 25853 | 4.5116 | 0.2990 |
0.1172 | 252.0 | 25956 | 4.7039 | 0.2921 |
0.1256 | 253.0 | 26059 | 4.6462 | 0.2852 |
0.1227 | 254.0 | 26162 | 4.7470 | 0.2852 |
0.1186 | 255.0 | 26265 | 4.6541 | 0.2921 |
0.1114 | 256.0 | 26368 | 4.6005 | 0.2887 |
0.1154 | 257.0 | 26471 | 4.5707 | 0.2818 |
0.1229 | 258.0 | 26574 | 4.5180 | 0.2749 |
0.1138 | 259.0 | 26677 | 4.6220 | 0.2818 |
0.0987 | 260.0 | 26780 | 4.6446 | 0.2921 |
0.1056 | 261.0 | 26883 | 4.7600 | 0.2715 |
0.1362 | 262.0 | 26986 | 4.6703 | 0.2680 |
0.1131 | 263.0 | 27089 | 4.6065 | 0.2715 |
0.1127 | 264.0 | 27192 | 4.5125 | 0.2784 |
0.1248 | 265.0 | 27295 | 4.5967 | 0.2921 |
0.111 | 266.0 | 27398 | 4.6182 | 0.2474 |
0.1203 | 267.0 | 27501 | 4.5969 | 0.2887 |
0.1242 | 268.0 | 27604 | 4.5437 | 0.2749 |
0.1041 | 269.0 | 27707 | 4.7105 | 0.2887 |
0.1233 | 270.0 | 27810 | 4.6305 | 0.2784 |
0.1003 | 271.0 | 27913 | 4.5865 | 0.2990 |
0.1144 | 272.0 | 28016 | 4.6216 | 0.2852 |
0.1061 | 273.0 | 28119 | 4.5387 | 0.2955 |
0.1102 | 274.0 | 28222 | 4.5850 | 0.2921 |
0.109 | 275.0 | 28325 | 4.6442 | 0.2921 |
0.1277 | 276.0 | 28428 | 4.5837 | 0.2612 |
0.1101 | 277.0 | 28531 | 4.7880 | 0.2784 |
0.1136 | 278.0 | 28634 | 4.5664 | 0.2646 |
0.1125 | 279.0 | 28737 | 4.7245 | 0.2990 |
0.1207 | 280.0 | 28840 | 4.7841 | 0.2852 |
0.1223 | 281.0 | 28943 | 4.7736 | 0.2852 |
0.1132 | 282.0 | 29046 | 4.6193 | 0.2852 |
0.1118 | 283.0 | 29149 | 4.7512 | 0.2921 |
0.1196 | 284.0 | 29252 | 4.7773 | 0.2680 |
0.1035 | 285.0 | 29355 | 4.6611 | 0.2921 |
0.1079 | 286.0 | 29458 | 4.6916 | 0.2921 |
0.1124 | 287.0 | 29561 | 4.6505 | 0.2680 |
0.1024 | 288.0 | 29664 | 4.6303 | 0.2680 |
0.101 | 289.0 | 29767 | 4.6079 | 0.2852 |
0.124 | 290.0 | 29870 | 4.4566 | 0.2887 |
0.1121 | 291.0 | 29973 | 4.5021 | 0.2887 |
0.1005 | 292.0 | 30076 | 4.5479 | 0.2852 |
0.1152 | 293.0 | 30179 | 4.6658 | 0.2749 |
0.113 | 294.0 | 30282 | 4.5608 | 0.2749 |
0.112 | 295.0 | 30385 | 4.6577 | 0.2852 |
0.1095 | 296.0 | 30488 | 4.5323 | 0.2784 |
0.1053 | 297.0 | 30591 | 4.6355 | 0.2921 |
0.1138 | 298.0 | 30694 | 4.7187 | 0.2852 |
0.1105 | 299.0 | 30797 | 4.6037 | 0.2784 |
0.0944 | 300.0 | 30900 | 4.7195 | 0.2646 |
0.1027 | 301.0 | 31003 | 4.6786 | 0.2749 |
0.0994 | 302.0 | 31106 | 4.7625 | 0.2990 |
0.1229 | 303.0 | 31209 | 4.8497 | 0.2715 |
0.1094 | 304.0 | 31312 | 4.7454 | 0.2612 |
0.1225 | 305.0 | 31415 | 4.7722 | 0.2818 |
0.102 | 306.0 | 31518 | 4.8431 | 0.2749 |
0.1283 | 307.0 | 31621 | 4.7977 | 0.2784 |
0.109 | 308.0 | 31724 | 4.6382 | 0.3127 |
0.1193 | 309.0 | 31827 | 4.7094 | 0.2543 |
0.1106 | 310.0 | 31930 | 4.7562 | 0.2921 |
0.1032 | 311.0 | 32033 | 4.7265 | 0.2577 |
0.114 | 312.0 | 32136 | 4.7516 | 0.2852 |
0.1265 | 313.0 | 32239 | 4.7882 | 0.2474 |
0.1252 | 314.0 | 32342 | 4.7084 | 0.2543 |
0.1102 | 315.0 | 32445 | 4.6895 | 0.2887 |
0.0984 | 316.0 | 32548 | 4.6341 | 0.3024 |
0.0978 | 317.0 | 32651 | 4.6211 | 0.3196 |
0.1068 | 318.0 | 32754 | 4.7675 | 0.2921 |
0.1017 | 319.0 | 32857 | 4.7061 | 0.2784 |
0.1138 | 320.0 | 32960 | 4.7139 | 0.2784 |
0.0997 | 321.0 | 33063 | 4.7117 | 0.2852 |
0.1036 | 322.0 | 33166 | 4.7136 | 0.3058 |
0.0988 | 323.0 | 33269 | 4.7139 | 0.2852 |
0.1052 | 324.0 | 33372 | 4.7646 | 0.3058 |
0.0957 | 325.0 | 33475 | 4.7901 | 0.2955 |
0.1009 | 326.0 | 33578 | 4.7048 | 0.2749 |
0.0957 | 327.0 | 33681 | 4.6212 | 0.2955 |
0.1244 | 328.0 | 33784 | 4.7481 | 0.2852 |
0.1021 | 329.0 | 33887 | 4.7497 | 0.2852 |
0.1017 | 330.0 | 33990 | 4.8310 | 0.2749 |
0.0957 | 331.0 | 34093 | 4.6941 | 0.3093 |
0.1042 | 332.0 | 34196 | 4.7253 | 0.3127 |
0.1046 | 333.0 | 34299 | 4.8593 | 0.2784 |
0.1103 | 334.0 | 34402 | 4.8480 | 0.2715 |
0.09 | 335.0 | 34505 | 4.9101 | 0.3162 |
0.1108 | 336.0 | 34608 | 4.7839 | 0.2887 |
0.1043 | 337.0 | 34711 | 4.9543 | 0.2680 |
0.104 | 338.0 | 34814 | 4.8026 | 0.2990 |
0.1015 | 339.0 | 34917 | 4.8008 | 0.2887 |
0.1029 | 340.0 | 35020 | 4.9069 | 0.2990 |
0.1002 | 341.0 | 35123 | 4.9242 | 0.3024 |
0.1076 | 342.0 | 35226 | 4.7199 | 0.2921 |
0.1055 | 343.0 | 35329 | 4.8440 | 0.3162 |
0.0925 | 344.0 | 35432 | 4.8572 | 0.3230 |
0.0827 | 345.0 | 35535 | 4.9133 | 0.3024 |
0.1105 | 346.0 | 35638 | 4.9865 | 0.2852 |
0.0875 | 347.0 | 35741 | 4.7973 | 0.2955 |
0.106 | 348.0 | 35844 | 4.8696 | 0.2955 |
0.1083 | 349.0 | 35947 | 4.9786 | 0.2646 |
0.105 | 350.0 | 36050 | 4.9114 | 0.2680 |
0.1075 | 351.0 | 36153 | 4.8693 | 0.2612 |
0.1026 | 352.0 | 36256 | 4.8735 | 0.2887 |
0.101 | 353.0 | 36359 | 5.0447 | 0.2646 |
0.0944 | 354.0 | 36462 | 4.9492 | 0.2784 |
0 |
Nsfw Image Detection
Apache-2.0
基於ViT架構的NSFW圖像分類模型,通過監督學習在ImageNet-21k數據集上預訓練,並在80,000張圖像上微調,用於區分正常和NSFW內容。
圖像分類
Transformers

N
Falconsai
82.4M
588
Fairface Age Image Detection
Apache-2.0
基於Vision Transformer架構的圖像分類模型,在ImageNet-21k數據集上預訓練,適用於多類別圖像分類任務
圖像分類
Transformers

F
dima806
76.6M
10
Dinov2 Small
Apache-2.0
基於DINOv2方法訓練的小尺寸視覺Transformer模型,通過自監督學習提取圖像特徵
圖像分類
Transformers

D
facebook
5.0M
31
Vit Base Patch16 224
Apache-2.0
基於ImageNet-21k預訓練和ImageNet微調的視覺變換器模型,用於圖像分類任務
圖像分類
V
google
4.8M
775
Vit Base Patch16 224 In21k
Apache-2.0
基於ImageNet-21k數據集預訓練的視覺Transformer模型,用於圖像分類任務。
圖像分類
V
google
2.2M
323
Dinov2 Base
Apache-2.0
基於DINOv2方法訓練的視覺Transformer模型,通過自監督學習提取圖像特徵
圖像分類
Transformers

D
facebook
1.9M
126
Gender Classification
一個基於PyTorch和HuggingPics構建的圖像分類模型,用於識別圖像中的性別
圖像分類
Transformers

G
rizvandwiki
1.8M
48
Vit Base Nsfw Detector
Apache-2.0
基於Vision Transformer (ViT)架構的圖像分類模型,專門用於檢測圖像是否包含NSFW(不安全)內容。
圖像分類
Transformers

V
AdamCodd
1.2M
47
Vit Hybrid Base Bit 384
Apache-2.0
混合視覺變換器(ViT)模型結合了卷積網絡和Transformer架構,用於圖像分類任務,在ImageNet上表現出色。
圖像分類
Transformers

V
google
992.28k
6
Gender Classification 2
這是一個基於PyTorch框架和HuggingPics工具生成的圖像分類模型,專門用於性別分類任務。
圖像分類
Transformers

G
rizvandwiki
906.98k
32
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98