Vit Base Game Icons
V
Vit Base Game Icons
Developed by chromefan
An image classification model based on ViT architecture, fine-tuned on a game advertisement dataset
Downloads 18
Release Time : 3/16/2023
Model Overview
This model is an image classification model fine-tuned on a game advertisement image dataset, based on the google/vit-base-patch16-224-in21k pre-trained model. It is primarily used for game advertisement image classification tasks.
Model Features
Based on ViT Architecture
Uses Vision Transformer (ViT) architecture, capable of effectively processing image data
Transfer Learning
Fine-tuned based on a pre-trained model, suitable for image classification tasks in specific domains
Model Capabilities
Image Classification
Game Advertisement Recognition
Use Cases
Advertisement Analysis
Game Advertisement Classification
Classify and recognize game advertisement images
Evaluation accuracy 30.24%
đ game-ad-0306_outputs
This model is a fine - tuned version of [google/vit - base - patch16 - 224 - in21k](https://huggingface.co/google/vit - base - patch16 - 224 - in21k) on the ./data/games - ad - 0306 dataset. It offers an effective solution for image classification tasks. On the evaluation set, it achieves a Loss of 2.6235 and an Accuracy of 0.3024.
đ Quick Start
This model is ready for use in image classification tasks. You can fine - tune it further based on your specific requirements.
⨠Features
- Fine - tuned Model: Built on the foundation of [google/vit - base - patch16 - 224 - in21k], it has been fine - tuned on a specific dataset for better performance.
- Evaluation Metrics: Provides clear evaluation metrics such as Loss and Accuracy, allowing users to assess its performance.
đ§ Technical Details
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e - 05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 13373
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- num_epochs: 1000.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
3.2891 | 1.0 | 103 | 3.0266 | 0.2165 |
2.9971 | 2.0 | 206 | 2.9194 | 0.2302 |
2.9151 | 3.0 | 309 | 2.8731 | 0.2474 |
2.8579 | 4.0 | 412 | 2.8072 | 0.2715 |
2.7768 | 5.0 | 515 | 2.7918 | 0.2577 |
2.7184 | 6.0 | 618 | 2.7296 | 0.2818 |
2.648 | 7.0 | 721 | 2.7044 | 0.2921 |
2.5884 | 8.0 | 824 | 2.7190 | 0.2680 |
2.5146 | 9.0 | 927 | 2.6942 | 0.2784 |
2.4384 | 10.0 | 1030 | 2.6877 | 0.2921 |
2.442 | 11.0 | 1133 | 2.6412 | 0.2818 |
2.3099 | 12.0 | 1236 | 2.6331 | 0.2852 |
2.2685 | 13.0 | 1339 | 2.6451 | 0.2990 |
2.182 | 14.0 | 1442 | 2.6927 | 0.2715 |
2.1421 | 15.0 | 1545 | 2.6615 | 0.3162 |
2.0483 | 16.0 | 1648 | 2.6500 | 0.3230 |
1.9884 | 17.0 | 1751 | 2.6527 | 0.2990 |
1.9316 | 18.0 | 1854 | 2.6736 | 0.2990 |
1.8785 | 19.0 | 1957 | 2.6391 | 0.2921 |
1.788 | 20.0 | 2060 | 2.7002 | 0.3127 |
1.7115 | 21.0 | 2163 | 2.8321 | 0.2715 |
1.6929 | 22.0 | 2266 | 2.6235 | 0.3024 |
1.6239 | 23.0 | 2369 | 2.6378 | 0.3058 |
1.5387 | 24.0 | 2472 | 2.6888 | 0.3127 |
1.5095 | 25.0 | 2575 | 2.6888 | 0.3127 |
1.4153 | 26.0 | 2678 | 2.6771 | 0.2715 |
1.4254 | 27.0 | 2781 | 2.7354 | 0.2887 |
1.3351 | 28.0 | 2884 | 2.7175 | 0.2990 |
1.2955 | 29.0 | 2987 | 2.7679 | 0.2818 |
1.2232 | 30.0 | 3090 | 2.7784 | 0.2921 |
1.2115 | 31.0 | 3193 | 2.8496 | 0.2749 |
1.1656 | 32.0 | 3296 | 2.7899 | 0.2818 |
1.1419 | 33.0 | 3399 | 2.7646 | 0.2715 |
1.0481 | 34.0 | 3502 | 2.8416 | 0.2715 |
0.9763 | 35.0 | 3605 | 2.8370 | 0.3024 |
0.9452 | 36.0 | 3708 | 2.7904 | 0.2955 |
0.9178 | 37.0 | 3811 | 2.8309 | 0.2715 |
0.9115 | 38.0 | 3914 | 2.8584 | 0.3093 |
0.8472 | 39.0 | 4017 | 2.9066 | 0.2612 |
0.8323 | 40.0 | 4120 | 2.8630 | 0.2921 |
0.7622 | 41.0 | 4223 | 3.0020 | 0.2680 |
0.7531 | 42.0 | 4326 | 2.8885 | 0.2921 |
0.7054 | 43.0 | 4429 | 2.8820 | 0.2818 |
0.685 | 44.0 | 4532 | 2.8764 | 0.3162 |
0.7206 | 45.0 | 4635 | 2.8659 | 0.3162 |
0.6304 | 46.0 | 4738 | 2.9537 | 0.2887 |
0.6369 | 47.0 | 4841 | 2.9660 | 0.2509 |
0.6161 | 48.0 | 4944 | 3.1112 | 0.2543 |
0.618 | 49.0 | 5047 | 2.9729 | 0.2990 |
0.556 | 50.0 | 5150 | 2.9870 | 0.2921 |
0.5314 | 51.0 | 5253 | 2.9934 | 0.3093 |
0.5502 | 52.0 | 5356 | 2.9379 | 0.2818 |
0.4958 | 53.0 | 5459 | 3.0344 | 0.3024 |
0.4896 | 54.0 | 5562 | 2.9924 | 0.2749 |
0.4803 | 55.0 | 5665 | 3.0161 | 0.3127 |
0.4554 | 56.0 | 5768 | 3.0221 | 0.2818 |
0.4591 | 57.0 | 5871 | 3.0461 | 0.3024 |
0.4349 | 58.0 | 5974 | 3.1377 | 0.3265 |
0.4127 | 59.0 | 6077 | 3.0169 | 0.2955 |
0.3973 | 60.0 | 6180 | 3.0338 | 0.2818 |
0.4109 | 61.0 | 6283 | 3.0638 | 0.2818 |
0.3872 | 62.0 | 6386 | 3.0810 | 0.2818 |
0.3693 | 63.0 | 6489 | 3.2003 | 0.2715 |
0.3457 | 64.0 | 6592 | 3.0843 | 0.2990 |
0.3521 | 65.0 | 6695 | 3.1623 | 0.3058 |
0.3625 | 66.0 | 6798 | 3.0036 | 0.3299 |
0.3339 | 67.0 | 6901 | 3.2389 | 0.2921 |
0.3378 | 68.0 | 7004 | 3.2493 | 0.2990 |
0.2981 | 69.0 | 7107 | 3.1308 | 0.2955 |
0.3023 | 70.0 | 7210 | 3.2455 | 0.3093 |
0.3076 | 71.0 | 7313 | 3.2725 | 0.2887 |
0.3201 | 72.0 | 7416 | 3.2563 | 0.2887 |
0.3083 | 73.0 | 7519 | 3.2520 | 0.2921 |
0.2906 | 74.0 | 7622 | 3.3344 | 0.3093 |
0.2721 | 75.0 | 7725 | 3.1952 | 0.2852 |
0.2873 | 76.0 | 7828 | 3.2529 | 0.3058 |
0.278 | 77.0 | 7931 | 3.3428 | 0.2818 |
0.2573 | 78.0 | 8034 | 3.3216 | 0.2784 |
0.2578 | 79.0 | 8137 | 3.4178 | 0.2955 |
0.2774 | 80.0 | 8240 | 3.3449 | 0.2818 |
0.2762 | 81.0 | 8343 | 3.3452 | 0.2749 |
0.2504 | 82.0 | 8446 | 3.5792 | 0.2955 |
0.2552 | 83.0 | 8549 | 3.3478 | 0.2818 |
0.2541 | 84.0 | 8652 | 3.4902 | 0.2784 |
0.2616 | 85.0 | 8755 | 3.2829 | 0.3127 |
0.2079 | 86.0 | 8858 | 3.5287 | 0.3162 |
0.2538 | 87.0 | 8961 | 3.4731 | 0.3196 |
0.2485 | 88.0 | 9064 | 3.5998 | 0.2646 |
0.2714 | 89.0 | 9167 | 3.4567 | 0.2921 |
0.232 | 90.0 | 9270 | 3.5061 | 0.2818 |
0.2577 | 91.0 | 9373 | 3.5370 | 0.2921 |
0.2232 | 92.0 | 9476 | 3.5062 | 0.2509 |
0.2351 | 93.0 | 9579 | 3.5592 | 0.2784 |
0.2299 | 94.0 | 9682 | 3.5167 | 0.3333 |
0.2415 | 95.0 | 9785 | 3.6283 | 0.2887 |
0.2265 | 96.0 | 9888 | 3.4819 | 0.2852 |
0.2448 | 97.0 | 9991 | 3.5793 | 0.2990 |
0.2141 | 98.0 | 10094 | 3.5728 | 0.2887 |
0.1979 | 99.0 | 10197 | 3.4685 | 0.2921 |
0.2077 | 100.0 | 10300 | 3.5586 | 0.3230 |
0.1854 | 101.0 | 10403 | 3.5650 | 0.3162 |
0.2017 | 102.0 | 10506 | 3.4760 | 0.2921 |
0.2119 | 103.0 | 10609 | 3.5531 | 0.2784 |
0.2314 | 104.0 | 10712 | 3.5118 | 0.3024 |
0.212 | 105.0 | 10815 | 3.5496 | 0.3196 |
0.197 | 106.0 | 10918 | 3.6080 | 0.2543 |
0.2067 | 107.0 | 11021 | 3.6217 | 0.2887 |
0.1896 | 108.0 | 11124 | 3.6446 | 0.3230 |
0.198 | 109.0 | 11227 | 3.7699 | 0.2784 |
0.2152 | 110.0 | 11330 | 3.6709 | 0.3162 |
0.2121 | 111.0 | 11433 | 3.6266 | 0.3368 |
0.1869 | 112.0 | 11536 | 3.6681 | 0.2955 |
0.1927 | 113.0 | 11639 | 3.7305 | 0.3162 |
0.2259 | 114.0 | 11742 | 3.6302 | 0.3127 |
0.1809 | 115.0 | 11845 | 3.6301 | 0.3093 |
0.2071 | 116.0 | 11948 | 3.7288 | 0.3127 |
0.1977 | 117.0 | 12051 | 3.6467 | 0.3058 |
0.1902 | 118.0 | 12154 | 3.7039 | 0.3093 |
0.1996 | 119.0 | 12257 | 3.9013 | 0.3093 |
0.2122 | 120.0 | 12360 | 3.8228 | 0.2990 |
0.1702 | 121.0 | 12463 | 3.7118 | 0.3162 |
0.1889 | 122.0 | 12566 | 3.7211 | 0.3162 |
0.1857 | 123.0 | 12669 | 3.8894 | 0.2509 |
0.2003 | 124.0 | 12772 | 3.6575 | 0.3093 |
0.202 | 125.0 | 12875 | 3.7925 | 0.3333 |
0.1722 | 126.0 | 12978 | 3.8188 | 0.2818 |
0.1716 | 127.0 | 13081 | 3.9584 | 0.3162 |
0.1598 | 128.0 | 13184 | 3.7732 | 0.3265 |
0.1825 | 129.0 | 13287 | 3.8038 | 0.3196 |
0.1716 | 130.0 | 13390 | 3.7606 | 0.3196 |
0.179 | 131.0 | 13493 | 3.7458 | 0.2955 |
0.1817 | 132.0 | 13596 | 3.8413 | 0.2955 |
0.1606 | 133.0 | 13699 | 3.8766 | 0.3196 |
0.1625 | 134.0 | 13802 | 3.8188 | 0.3230 |
0.1622 | 135.0 | 13905 | 3.7223 | 0.2955 |
0.1852 | 136.0 | 14008 | 3.7774 | 0.3024 |
0.1671 | 137.0 | 14111 | 3.8407 | 0.2612 |
0.1862 | 138.0 | 14214 | 3.7442 | 0.3196 |
0.1808 | 139.0 | 14317 | 3.8458 | 0.3093 |
0.1375 | 140.0 | 14420 | 3.7372 | 0.3024 |
0.1876 | 141.0 | 14523 | 3.9925 | 0.2990 |
0.1693 | 142.0 | 14626 | 3.9364 | 0.3058 |
0.1719 | 143.0 | 14729 | 3.9149 | 0.2818 |
0.1406 | 144.0 | 14832 | 3.8603 | 0.2955 |
0.1709 | 145.0 | 14935 | 3.9216 | 0.3196 |
0.1794 | 146.0 | 15038 | 3.8934 | 0.3058 |
0.1455 | 147.0 | 15141 | 4.0086 | 0.2784 |
0.1959 | 148.0 | 15244 | 3.9358 | 0.3024 |
0.1664 | 149.0 | 15347 | 3.9775 | 0.2921 |
0.1455 | 150.0 | 15450 | 3.9304 | 0.2990 |
0.1819 | 151.0 | 15553 | 4.0299 | 0.2715 |
0.1532 | 152.0 | 15656 | 4.1219 | 0.2680 |
0.1638 | 153.0 | 15759 | 4.1465 | 0.3093 |
0.1579 | 154.0 | 15862 | 4.0596 | 0.2955 |
0.1668 | 155.0 | 15965 | 4.0857 | 0.3127 |
0.1401 | 156.0 | 16068 | 4.1669 | 0.2921 |
0.1452 | 157.0 | 16171 | 4.0430 | 0.2887 |
0.1568 | 158.0 | 16274 | 4.0157 | 0.2990 |
0.1771 | 159.0 | 16377 | 4.0770 | 0.3093 |
0.1383 | 160.0 | 16480 | 4.0888 | 0.2680 |
0.1572 | 161.0 | 16583 | 4.2271 | 0.2646 |
0.1472 | 162.0 | 16686 | 4.0215 | 0.2852 |
0.1534 | 163.0 | 16789 | 4.2248 | 0.3058 |
0.136 | 164.0 | 16892 | 4.2159 | 0.2852 |
0.1525 | 165.0 | 16995 | 4.0565 | 0.2990 |
0.1418 | 166.0 | 17098 | 4.1175 | 0.2852 |
0.1374 | 167.0 | 17201 | 4.1708 | 0.2921 |
0.1538 | 168.0 | 17304 | 4.2566 | 0.2784 |
0.1365 | 169.0 | 17407 | 4.3063 | 0.2577 |
0.1661 | 170.0 | 17510 | 4.2231 | 0.2887 |
0.1278 | 171.0 | 17613 | 4.3125 | 0.2646 |
0.1418 | 172.0 | 17716 | 4.3337 | 0.2646 |
0.1538 | 173.0 | 17819 | 4.3129 | 0.2852 |
0.1315 | 174.0 | 17922 | 4.3102 | 0.2680 |
0.128 | 175.0 | 18025 | 4.2853 | 0.2749 |
0.1398 | 176.0 | 18128 | 4.1560 | 0.2921 |
đ License
This project is licensed under the Apache - 2.0 license.
Nsfw Image Detection
Apache-2.0
An NSFW image classification model based on the ViT architecture, pre-trained on ImageNet-21k via supervised learning and fine-tuned on 80,000 images to distinguish between normal and NSFW content.
Image Classification
Transformers

N
Falconsai
82.4M
588
Fairface Age Image Detection
Apache-2.0
An image classification model based on Vision Transformer architecture, pre-trained on the ImageNet-21k dataset, suitable for multi-category image classification tasks
Image Classification
Transformers

F
dima806
76.6M
10
Dinov2 Small
Apache-2.0
A small-scale vision Transformer model trained using the DINOv2 method, extracting image features through self-supervised learning
Image Classification
Transformers

D
facebook
5.0M
31
Vit Base Patch16 224
Apache-2.0
Vision Transformer model pre-trained on ImageNet-21k and fine-tuned on ImageNet for image classification tasks
Image Classification
V
google
4.8M
775
Vit Base Patch16 224 In21k
Apache-2.0
A Vision Transformer model pretrained on the ImageNet-21k dataset for image classification tasks.
Image Classification
V
google
2.2M
323
Dinov2 Base
Apache-2.0
Vision Transformer model trained using the DINOv2 method, extracting image features through self-supervised learning
Image Classification
Transformers

D
facebook
1.9M
126
Gender Classification
An image classification model built with PyTorch and HuggingPics for recognizing gender in images
Image Classification
Transformers

G
rizvandwiki
1.8M
48
Vit Base Nsfw Detector
Apache-2.0
An image classification model based on Vision Transformer (ViT) architecture, specifically designed to detect whether images contain NSFW (Not Safe For Work) content.
Image Classification
Transformers

V
AdamCodd
1.2M
47
Vit Hybrid Base Bit 384
Apache-2.0
The Hybrid Vision Transformer (ViT) model combines convolutional networks and Transformer architectures for image classification tasks, excelling on ImageNet.
Image Classification
Transformers

V
google
992.28k
6
Gender Classification 2
This is an image classification model based on the PyTorch framework and generated using HuggingPics tools, specifically designed for gender classification tasks.
Image Classification
Transformers

G
rizvandwiki
906.98k
32
Featured Recommended AI Models
Š 2025AIbase