🚀 CAMeLBERT-Mix方言識別馬達爾語料庫26模型
CAMeLBERT-Mix方言識別馬達爾語料庫26模型 是一個方言識別(DID)模型,它通過對 CAMeLBERT-Mix 模型進行微調而構建。該模型旨在利用預訓練語言模型的強大能力,針對阿拉伯語不同方言進行準確識別,為阿拉伯語自然語言處理任務提供更精準的支持。
🚀 快速開始
你可以將CAMeLBERT-Mix方言識別馬達爾語料庫26模型作為transformers管道的一部分來使用。該模型很快也將在 CAMeL Tools 中可用。
✨ 主要特性
📦 安裝指南
要下載我們的模型,你需要 transformers>=3.5.0
。否則,你可以手動下載模型。
💻 使用示例
基礎用法
>>> from transformers import pipeline
>>> did = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-mix-did-madar26')
>>> sentences = ['عامل ايه ؟', 'شلونك ؟ شخبارك ؟']
>>> did(sentences)
[{'label': 'CAI', 'score': 0.8751305937767029},
{'label': 'DOH', 'score': 0.9867215156555176}]
注意事項
⚠️ 重要提示
要下載我們的模型,你需要 transformers>=3.5.0
。否則,你可以手動下載模型。
📚 詳細文檔
模型描述
CAMeLBERT-Mix方言識別馬達爾語料庫26模型 是一個方言識別(DID)模型,它通過對 CAMeLBERT-Mix 模型進行微調而構建。在微調過程中,我們使用了 MADAR語料庫26 數據集,該數據集包含26個標籤。我們的微調過程和使用的超參數可以在我們的論文 "The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models" 中找到。我們的微調代碼可以在 此處 獲取。
預期用途
你可以將CAMeLBERT-Mix方言識別馬達爾語料庫26模型作為transformers管道的一部分來使用。該模型很快也將在 CAMeL Tools 中可用。
📄 許可證
本模型採用Apache-2.0許可證。
引用
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
屬性 |
詳情 |
模型類型 |
方言識別(DID)模型 |
訓練數據 |
MADAR語料庫26數據集,包含26個標籤 |