🚀 GLiNER
GLiNER是一個命名實體識別(NER)模型,它能夠使用雙向Transformer編碼器(類似BERT)識別任何實體類型。它為傳統的NER模型提供了一個實用的替代方案,傳統NER模型僅限於預定義的實體;同時也為大語言模型(LLMs)提供了替代選擇,大語言模型雖然靈活,但在資源受限的場景下成本高且體積大。
🚀 快速開始
安裝
若要使用此模型,你必須安裝GLiNER Python庫:
!pip install gliner -U
使用
下載GLiNER庫後,你可以導入GLiNER類。然後使用GLiNER.from_pretrained
加載此模型,並使用predict_entities
預測實體。
from gliner import GLiNER
model = GLiNER.from_pretrained("gliner-community/gliner_medium-v2.5", load_tokenizer=True)
text = """
Cristiano Ronaldo dos Santos Aveiro (Portuguese pronunciation: [kɾiʃˈtjɐnu ʁɔˈnaldu]; born 5 February 1985) is a Portuguese professional footballer who plays as a forward for and captains both Saudi Pro League club Al Nassr and the Portugal national team. Widely regarded as one of the greatest players of all time, Ronaldo has won five Ballon d'Or awards,[note 3] a record three UEFA Men's Player of the Year Awards, and four European Golden Shoes, the most by a European player. He has won 33 trophies in his career, including seven league titles, five UEFA Champions Leagues, the UEFA European Championship and the UEFA Nations League. Ronaldo holds the records for most appearances (183), goals (140) and assists (42) in the Champions League, goals in the European Championship (14), international goals (128) and international appearances (205). He is one of the few players to have made over 1,200 professional career appearances, the most by an outfield player, and has scored over 850 official senior career goals for club and country, making him the top goalscorer of all time.
"""
labels = ["person", "award", "date", "competitions", "teams"]
entities = model.predict_entities(text, labels)
for entity in entities:
print(entity["text"], "=>", entity["label"])
Cristiano Ronaldo dos Santos Aveiro => person
5 February 1985 => date
Al Nassr => teams
Portugal national team => teams
Ballon d'Or => award
UEFA Men's Player of the Year Awards => award
European Golden Shoes => award
UEFA Champions Leagues => competitions
UEFA European Championship => competitions
UEFA Nations League => competitions
Champions League => competitions
European Championship => competitions
✨ 主要特性
- 能夠使用雙向Transformer編碼器識別任何實體類型。
- 為傳統NER模型和大語言模型提供了替代方案,適用於資源受限的場景。
📚 詳細文檔
命名實體識別基準測試結果
以下是模型先前版本與當前版本的結果對比:

可用模型
版本 |
模型名稱 |
參數數量 |
語言 |
許可證 |
v0 |
urchade/gliner_base urchade/gliner_multi |
209M 209M |
英語 多語言 |
cc - by - nc - 4.0 |
v1 |
[urchade/gliner_small - v1](https://huggingface.co/urchade/gliner_small - v1) [urchade/gliner_medium - v1](https://huggingface.co/urchade/gliner_medium - v1) [urchade/gliner_large - v1](https://huggingface.co/urchade/gliner_large - v1) |
166M 209M 459M |
英語 英語 英語 |
cc - by - nc - 4.0 |
v2 |
[urchade/gliner_small - v2](https://huggingface.co/urchade/gliner_small - v2) [urchade/gliner_medium - v2](https://huggingface.co/urchade/gliner_medium - v2) [urchade/gliner_large - v2](https://huggingface.co/urchade/gliner_large - v2) |
166M 209M 459M |
英語 英語 英語 |
apache - 2.0 |
v2.1 |
[urchade/gliner_small - v2.1](https://huggingface.co/urchade/gliner_small - v2.1) [urchade/gliner_medium - v2.1](https://huggingface.co/urchade/gliner_medium - v2.1) [urchade/gliner_large - v2.1](https://huggingface.co/urchade/gliner_large - v2.1) [urchade/gliner_multi - v2.1](https://huggingface.co/urchade/gliner_multi - v2.1) |
166M 209M 459M 209M |
英語 英語 英語 多語言 |
apache - 2.0 |
模型作者
引用
@misc{zaratiana2023gliner,
title={GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer},
author={Urchade Zaratiana and Nadi Tomeh and Pierre Holat and Thierry Charnois},
year={2023},
eprint={2311.08526},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
鏈接
- 論文:https://arxiv.org/abs/2311.08526
- 倉庫:https://github.com/urchade/GLiNER
📄 許可證
本項目採用Apache 2.0許可證。