🚀 GLiNER
GLiNER是一个命名实体识别(NER)模型,它能够使用双向Transformer编码器(类似BERT)识别任何实体类型。它为传统的NER模型提供了一个实用的替代方案,传统NER模型仅限于预定义的实体;同时也为大语言模型(LLMs)提供了替代选择,大语言模型虽然灵活,但在资源受限的场景下成本高且体积大。
🚀 快速开始
安装
若要使用此模型,你必须安装GLiNER Python库:
!pip install gliner -U
使用
下载GLiNER库后,你可以导入GLiNER类。然后使用GLiNER.from_pretrained
加载此模型,并使用predict_entities
预测实体。
from gliner import GLiNER
model = GLiNER.from_pretrained("gliner-community/gliner_medium-v2.5", load_tokenizer=True)
text = """
Cristiano Ronaldo dos Santos Aveiro (Portuguese pronunciation: [kɾiʃˈtjɐnu ʁɔˈnaldu]; born 5 February 1985) is a Portuguese professional footballer who plays as a forward for and captains both Saudi Pro League club Al Nassr and the Portugal national team. Widely regarded as one of the greatest players of all time, Ronaldo has won five Ballon d'Or awards,[note 3] a record three UEFA Men's Player of the Year Awards, and four European Golden Shoes, the most by a European player. He has won 33 trophies in his career, including seven league titles, five UEFA Champions Leagues, the UEFA European Championship and the UEFA Nations League. Ronaldo holds the records for most appearances (183), goals (140) and assists (42) in the Champions League, goals in the European Championship (14), international goals (128) and international appearances (205). He is one of the few players to have made over 1,200 professional career appearances, the most by an outfield player, and has scored over 850 official senior career goals for club and country, making him the top goalscorer of all time.
"""
labels = ["person", "award", "date", "competitions", "teams"]
entities = model.predict_entities(text, labels)
for entity in entities:
print(entity["text"], "=>", entity["label"])
Cristiano Ronaldo dos Santos Aveiro => person
5 February 1985 => date
Al Nassr => teams
Portugal national team => teams
Ballon d'Or => award
UEFA Men's Player of the Year Awards => award
European Golden Shoes => award
UEFA Champions Leagues => competitions
UEFA European Championship => competitions
UEFA Nations League => competitions
Champions League => competitions
European Championship => competitions
✨ 主要特性
- 能够使用双向Transformer编码器识别任何实体类型。
- 为传统NER模型和大语言模型提供了替代方案,适用于资源受限的场景。
📚 详细文档
命名实体识别基准测试结果
以下是模型先前版本与当前版本的结果对比:

可用模型
版本 |
模型名称 |
参数数量 |
语言 |
许可证 |
v0 |
urchade/gliner_base urchade/gliner_multi |
209M 209M |
英语 多语言 |
cc - by - nc - 4.0 |
v1 |
[urchade/gliner_small - v1](https://huggingface.co/urchade/gliner_small - v1) [urchade/gliner_medium - v1](https://huggingface.co/urchade/gliner_medium - v1) [urchade/gliner_large - v1](https://huggingface.co/urchade/gliner_large - v1) |
166M 209M 459M |
英语 英语 英语 |
cc - by - nc - 4.0 |
v2 |
[urchade/gliner_small - v2](https://huggingface.co/urchade/gliner_small - v2) [urchade/gliner_medium - v2](https://huggingface.co/urchade/gliner_medium - v2) [urchade/gliner_large - v2](https://huggingface.co/urchade/gliner_large - v2) |
166M 209M 459M |
英语 英语 英语 |
apache - 2.0 |
v2.1 |
[urchade/gliner_small - v2.1](https://huggingface.co/urchade/gliner_small - v2.1) [urchade/gliner_medium - v2.1](https://huggingface.co/urchade/gliner_medium - v2.1) [urchade/gliner_large - v2.1](https://huggingface.co/urchade/gliner_large - v2.1) [urchade/gliner_multi - v2.1](https://huggingface.co/urchade/gliner_multi - v2.1) |
166M 209M 459M 209M |
英语 英语 英语 多语言 |
apache - 2.0 |
模型作者
引用
@misc{zaratiana2023gliner,
title={GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer},
author={Urchade Zaratiana and Nadi Tomeh and Pierre Holat and Thierry Charnois},
year={2023},
eprint={2311.08526},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
链接
- 论文:https://arxiv.org/abs/2311.08526
- 仓库:https://github.com/urchade/GLiNER
📄 许可证
本项目采用Apache 2.0许可证。