🚀 CAMeLBERT-Mix POS-GLF模型
CAMeLBERT-Mix POS-GLF模型 是一個海灣阿拉伯語詞性標註模型,它通過微調 CAMeLBERT-Mix 模型構建而成。該模型能夠精準地對海灣阿拉伯語進行詞性標註,為阿拉伯語自然語言處理任務提供了有力支持。
📚 詳細文檔
模型描述
CAMeLBERT-Mix POS-GLF模型 是一個海灣阿拉伯語詞性標註模型,它通過微調 CAMeLBERT-Mix 模型構建而成。
在微調過程中,我們使用了 Gumar 數據集。
我們的微調過程和所使用的超參數可以在我們的論文 "The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models" 中找到。我們的微調代碼可以在 這裡 找到。
預期用途
你可以將CAMeLBERT-Mix POS-GLF模型作為transformers管道的一部分使用。
該模型也將很快在 CAMeL Tools 中可用。
如何使用
要將該模型與transformers管道一起使用:
>>> from transformers import pipeline
>>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-glf')
>>> text = 'شلونك ؟ شخبارك ؟'
>>> pos(text)
[{'entity': 'pron_interrog', 'score': 0.82657206, 'index': 1, 'word': 'شلون', 'start': 0, 'end': 4}, {'entity': 'prep', 'score': 0.9771731, 'index': 2, 'word': '##ك', 'start': 4, 'end': 5}, {'entity': 'punc', 'score': 0.9999568, 'index': 3, 'word': '؟', 'start': 6, 'end': 7}, {'entity': 'noun', 'score': 0.9977217, 'index': 4, 'word': 'ش', 'start': 8, 'end': 9}, {'entity': 'noun', 'score': 0.99993783, 'index': 5, 'word': '##خبار', 'start': 9, 'end': 13}, {'entity': 'prep', 'score': 0.5309442, 'index': 6, 'word': '##ك', 'start': 13, 'end': 14}, {'entity': 'punc', 'score': 0.9999575, 'index': 7, 'word': '؟', 'start': 15, 'end': 16}]
注意:要下載我們的模型,你需要 transformers>=3.5.0
。
否則,你可以手動下載這些模型。
引用
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
📄 許可證
本項目採用Apache-2.0許可證。