Fr Core News Lg
模型概述
這是一個全面的法語自然語言處理流程,包含詞性標註、命名實體識別、依存句法分析、詞形還原等功能。模型基於高質量的法語語料庫訓練,適用於新聞領域文本處理。
模型特點
多任務處理能力
單一模型支持命名實體識別、詞性標註、依存分析、詞形還原等多種NLP任務
CPU優化
專為CPU使用場景優化,無需GPU即可高效運行
高質量向量表示
包含500,000個預訓練的詞向量(300維),提供豐富的語義表示
全面的形態分析
支持法語豐富的形態特徵分析,包括性別、數、時態等
模型能力
命名實體識別
詞性標註
形態分析
詞形還原
依存句法分析
句子分割
使用案例
文本分析
新聞內容分析
從法語新聞中提取命名實體(人名、地名、組織名等)
NER F值達到0.839
語法分析
分析法語句子的語法結構和詞性標註
UPOS標註準確率達0.973
信息提取
結構化數據提取
從非結構化法語文本中提取結構化信息
🚀 fr_core_news_lg 模型
fr_core_news_lg
是一個針對法語優化的自然語言處理模型,專為CPU使用場景設計。它能夠執行多種任務,如命名實體識別(NER)、詞性標註(POS)、形態分析等,在各項任務上都有出色的表現。
🚀 快速開始
詳情請訪問:https://spacy.io/models/fr#fr_core_news_lg
✨ 主要特性
- 專為法語設計,在多種自然語言處理任務上表現優異。
- 經過優化,適合在CPU上運行。
- 涵蓋多個組件,如
tok2vec
、morphologizer
、parser
等,可滿足不同的處理需求。
📚 詳細文檔
模型信息
屬性 | 詳情 |
---|---|
模型名稱 | fr_core_news_lg |
版本 | 3.7.0 |
spaCy 版本要求 | >=3.7.0,<3.8.0 |
默認管道 | tok2vec , morphologizer , parser , attribute_ruler , lemmatizer , ner |
組件 | tok2vec , morphologizer , parser , senter , attribute_ruler , lemmatizer , ner |
向量 | 500000 個鍵,500000 個唯一向量(300 維) |
來源 | UD French Sequoia v2.8 (Candito, Marie; Seddah, Djamé; Perrier, Guy; Guillaume, Bruno) WikiNER (Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, James R Curran) spaCy lookups data (Explosion) Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia) (Explosion) |
許可證 | LGPL-LR |
作者 | Explosion |
標籤方案
查看標籤方案(3 個組件共 237 個標籤)
組件 | 標籤 |
---|---|
morphologizer |
POS=PROPN , Gender=Fem|Number=Sing|POS=DET|PronType=Dem , Gender=Fem|Number=Sing|POS=NOUN , Number=Plur|POS=PRON|Person=1 , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , POS=SCONJ , POS=ADP , Definite=Def|Gender=Masc|Number=Sing|POS=DET|PronType=Art , NumType=Ord|POS=ADJ , Gender=Masc|Number=Sing|POS=NOUN , POS=PUNCT , Gender=Masc|Number=Sing|POS=PROPN , Number=Plur|POS=ADJ , Gender=Masc|Number=Plur|POS=NOUN , Definite=Ind|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Number=Sing|POS=ADJ , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Imp|VerbForm=Fin , POS=ADV , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Past|VerbForm=Fin , Gender=Fem|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Definite=Def|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Gender=Fem|Number=Sing|POS=PROPN , Definite=Def|Number=Sing|POS=DET|PronType=Art , NumType=Card|POS=NUM , Definite=Def|Number=Plur|POS=DET|PronType=Art , Gender=Masc|Number=Plur|POS=ADJ , POS=CCONJ , Gender=Fem|Number=Plur|POS=NOUN , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Past|VerbForm=Fin , Gender=Masc|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part , Gender=Fem|Number=Plur|POS=ADJ , POS=ADJ , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Past|VerbForm=Fin , POS=PRON|PronType=Rel , Number=Sing|POS=DET|Poss=Yes , Definite=Def|Gender=Masc|Number=Sing|POS=ADP|PronType=Art , Definite=Def|Number=Plur|POS=ADP|PronType=Art , Definite=Ind|Number=Plur|POS=DET|PronType=Art , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Past|VerbForm=Fin , Gender=Masc|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , POS=VERB|VerbForm=Inf , Gender=Fem|Number=Sing|POS=ADJ , Gender=Masc|Number=Sing|POS=PRON|Person=3 , Number=Plur|POS=DET , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Gender=Masc|Number=Sing|POS=ADJ , Gender=Masc|Number=Sing|POS=DET|PronType=Dem , POS=ADV|PronType=Int , POS=VERB|Tense=Pres|VerbForm=Part , Gender=Fem|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part , Definite=Ind|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Gender=Masc|POS=ADJ , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Fut|VerbForm=Fin , Number=Plur|POS=DET|Poss=Yes , POS=AUX|VerbForm=Inf , Gender=Masc|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Gender=Masc|POS=VERB|Tense=Past|VerbForm=Part , POS=ADV|Polarity=Neg , Definite=Ind|Number=Sing|POS=DET|PronType=Art , Gender=Fem|Number=Sing|POS=PRON|Person=3 , POS=PRON|Person=3|Reflex=Yes , Gender=Masc|POS=NOUN , POS=AUX|Tense=Past|VerbForm=Part , POS=PRON|Person=3 , Number=Plur|POS=NOUN , NumType=Ord|Number=Sing|POS=ADJ , POS=VERB|Tense=Past|VerbForm=Part , POS=AUX|Tense=Pres|VerbForm=Part , Gender=Masc|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part , Number=Sing|POS=PRON|Person=3 , Number=Sing|POS=NOUN , Gender=Masc|Number=Plur|POS=PRON|Person=3 , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Imp|VerbForm=Fin , Gender=Fem|NumType=Ord|Number=Sing|POS=ADJ , Number=Plur|POS=PROPN , Number=Sing|POS=PROPN , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Imp|VerbForm=Fin , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Gender=Masc|Number=Plur|POS=PRON|PronType=Dem , Gender=Masc|Number=Sing|POS=DET , Gender=Fem|Number=Sing|POS=DET|Poss=Yes , Gender=Masc|POS=PRON , POS=NOUN , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Fut|VerbForm=Fin , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Fut|VerbForm=Fin , Mood=Ind|Number=Plur|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Number=Plur|POS=PRON , Gender=Masc|NumType=Ord|Number=Plur|POS=ADJ , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Fut|VerbForm=Fin , Gender=Fem|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Number=Sing|POS=PRON , Number=Sing|POS=PRON|PronType=Dem , Mood=Ind|POS=VERB|VerbForm=Fin , Number=Plur|POS=DET|PronType=Dem , Gender=Masc|Number=Sing|POS=PRON|Person=3|PronType=Prs , Gender=Masc|Number=Plur|POS=PRON|Person=3|PronType=Prs , Gender=Masc|Number=Sing|POS=PRON , Gender=Masc|Number=Sing|POS=PRON|Person=3|PronType=Dem , Number=Sing|POS=PRON|Person=2|PronType=Prs , Gender=Masc|Number=Sing|POS=PRON|PronType=Rel , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Imp|VerbForm=Fin , Mood=Sub|Number=Sing|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Gender=Masc|NumType=Ord|Number=Sing|POS=ADJ , POS=PRON , POS=NUM , Gender=Fem|POS=NOUN , POS=SPACE , Gender=Fem|Number=Plur|POS=PRON , Number=Plur|POS=PRON|Person=3 , Number=Sing|POS=VERB|Tense=Past|VerbForm=Part , Number=Sing|POS=PRON|Person=1 , Mood=Ind|Number=Sing|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Mood=Sub|Number=Sing|POS=VERB|Person=3|Tense=Past|VerbForm=Fin , Gender=Fem|Number=Sing|POS=PRON , Gender=Fem|Number=Sing|POS=PRON|Person=3|PronType=Prs , Mood=Sub|Number=Sing|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , POS=INTJ , Number=Plur|POS=PRON|Person=2 , NumType=Card|POS=PRON , Definite=Ind|Gender=Fem|Number=Plur|POS=DET|PronType=Art , Gender=Fem|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part , NumType=Card|POS=NOUN , POS=PRON|PronType=Int , Gender=Fem|Number=Plur|POS=PRON|Person=3 , Gender=Fem|Number=Sing|POS=DET , Mood=Cnd|Number=Sing|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Gender=Fem|Number=Plur|POS=DET , Mood=Sub|Number=Plur|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Definite=Ind|Gender=Masc|Number=Plur|POS=DET|PronType=Art , Mood=Cnd|Number=Sing|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Gender=Masc|Number=Sing|POS=PRON|PronType=Dem , Gender=Masc|Number=Plur|POS=PROPN , Mood=Cnd|Number=Plur|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Gender=Fem|Number=Sing|POS=PRON|PronType=Dem , Number=Sing|POS=DET , Gender=Masc|NumType=Card|Number=Plur|POS=NOUN , Gender=Fem|Number=Plur|POS=PRON|PronType=Dem , Mood=Ind|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Gender=Fem|POS=PRON , Gender=Masc|POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Gender=Fem|Number=Sing|POS=PRON|PronType=Rel , Mood=Ind|Number=Sing|POS=AUX|Person=1|Tense=Imp|VerbForm=Fin , Mood=Cnd|Number=Plur|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Mood=Ind|Number=Sing|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , Gender=Masc|Number=Sing|POS=AUX|Tense=Past|VerbForm=Part , POS=X , POS=SYM , Mood=Imp|Number=Plur|POS=VERB|Person=2|Tense=Pres|VerbForm=Fin , Mood=Ind|Number=Plur|POS=VERB|Person=2|Tense=Pres|VerbForm=Fin , Gender=Masc|Number=Sing|POS=DET|PronType=Int , Gender=Fem|Number=Plur|POS=DET|PronType=Int , POS=DET , Gender=Masc|Number=Plur|POS=PRON , Mood=Sub|Number=Plur|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Mood=Ind|POS=VERB|Person=3|VerbForm=Fin , Number=Sing|POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Mood=Cnd|Number=Plur|POS=VERB|Person=2|Tense=Pres|VerbForm=Fin , Mood=Ind|Number=Plur|POS=AUX|Person=2|Tense=Pres|VerbForm=Fin , Gender=Fem|Number=Sing|POS=DET|PronType=Int , Gender=Masc|Number=Plur|POS=DET , Gender=Fem|Number=Plur|POS=PRON|PronType=Rel , Number=Plur|POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Gender=Masc|Number=Plur|POS=PRON|PronType=Rel , POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Gender=Fem|NumType=Ord|Number=Plur|POS=ADJ , Mood=Ind|Number=Plur|POS=VERB|Person=2|Tense=Fut|VerbForm=Fin , Mood=Imp|POS=VERB|Tense=Pres|VerbForm=Fin , Number=Plur|POS=PRON|Person=2|Reflex=Yes , Mood=Cnd|Number=Sing|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Number=Plur|POS=PRON|Person=1|Reflex=Yes , Gender=Masc|NumType=Card|Number=Sing|POS=NOUN , Mood=Ind|Number=Plur|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , Mood=Ind|Number=Plur|POS=AUX|Person=1|Tense=Fut|VerbForm=Fin , Mood=Ind|Number=Plur|POS=VERB|Person=1|Tense=Fut|VerbForm=Fin , Number=Sing|POS=PRON|Person=1|Reflex=Yes , Mood=Ind|Number=Plur|POS=VERB|Person=1|Tense=Imp|VerbForm=Fin , Mood=Ind|Number=Plur|POS=AUX|Person=1|Tense=Imp|VerbForm=Fin , Mood=Ind|Number=Sing|POS=VERB|Person=1|Tense=Imp|VerbForm=Fin , Mood=Sub|Number=Sing|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Gender=Masc|POS=PROPN , Mood=Cnd|Number=Plur|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Number=Plur|POS=PRON|Person=1|PronType=Prs , Mood=Sub|Number=Sing|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , Number=Plur|POS=PRON|Person=2|PronType=Prs , Mood=Ind|Number=Sing|POS=VERB|Person=1|Tense=Fut|VerbForm=Fin , Gender=Fem|Number=Plur|POS=PRON|Person=3|PronType=Prs , Number=Sing|POS=PRON|Person=1|PronType=Prs , Mood=Cnd|Number=Sing|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , Mood=Sub|Number=Plur|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , Mood=Imp|Number=Plur|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Mood=Sub|Number=Plur|POS=AUX|Person=2|Tense=Pres|VerbForm=Fin , Mood=Ind|Number=Plur|POS=VERB|Person=2|Tense=Imp|VerbForm=Fin , Mood=Ind|Number=Sing|POS=AUX|Person=2|Tense=Imp|VerbForm=Fin , Number=Plur|POS=VERB|Tense=Past|VerbForm=Part , Gender=Fem|Number=Plur|POS=PROPN , Gender=Masc|NumType=Card|POS=NUM |
parser |
ROOT , acl , acl:relcl , advcl , advmod , amod , appos , aux:pass , aux:tense , case , cc , ccomp , conj , cop , dep , det , expl:comp , expl:pass , expl:subj , fixed , flat:foreign , flat:name , iobj , mark , nmod , nsubj , nsubj:pass , nummod , obj , obl:agent , obl:arg , obl:mod , parataxis , punct , vocative , xcomp |
ner |
LOC , MISC , ORG , PER |
準確率
類型 | 得分 |
---|---|
TOKEN_ACC |
99.80 |
TOKEN_P |
98.44 |
TOKEN_R |
98.96 |
TOKEN_F |
98.70 |
POS_ACC |
97.34 |
MORPH_ACC |
96.74 |
MORPH_MICRO_P |
98.91 |
MORPH_MICRO_R |
98.17 |
MORPH_MICRO_F |
98.54 |
SENTS_P |
85.92 |
SENTS_R |
89.26 |
SENTS_F |
87.35 |
DEP_UAS |
90.29 |
DEP_LAS |
86.54 |
TAG_ACC |
94.47 |
LEMMA_ACC |
91.36 |
ENTS_P |
83.99 |
ENTS_R |
83.87 |
ENTS_F |
83.93 |
🔧 技術細節
評估指標
任務 | 指標 | 值 |
---|---|---|
NER | NER Precision | 0.8398572946 |
NER | NER Recall | 0.83869741 |
NER | NER F Score | 0.8392769516 |
TAG | TAG (XPOS) Accuracy | 0.9446562919 |
POS | POS (UPOS) Accuracy | 0.9734102855 |
MORPH | Morph (UFeats) Accuracy | 0.9674260386 |
LEMMA | Lemma Accuracy | 0.9135840526 |
UNLABELED_DEPENDENCIES | Unlabeled Attachment Score (UAS) | 0.9028935185 |
LABELED_DEPENDENCIES | Labeled Attachment Score (LAS) | 0.8654090962 |
SENTS | Sentences F-Score | 0.8735083532 |
📄 許可證
本模型採用 LGPL-LR
許可證。
Indonesian Roberta Base Posp Tagger
MIT
這是一個基於印尼語RoBERTa模型微調的詞性標註模型,在indonlu數據集上訓練,用於印尼語文本的詞性標註任務。
序列標註
Transformers 其他

I
w11wo
2.2M
7
Bert Base NER
MIT
基於BERT微調的命名實體識別模型,可識別四類實體:地點(LOC)、組織機構(ORG)、人名(PER)和雜項(MISC)
序列標註 英語
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
該模型是基於RoBERTa微調的序列標註模型,用於識別和移除醫療記錄中的受保護健康信息(PHI/PII)。
序列標註
Transformers 支持多種語言

D
obi
1.1M
33
Ner English Fast
Flair自帶的英文快速4類命名實體識別模型,基於Flair嵌入和LSTM-CRF架構,在CoNLL-03數據集上達到92.92的F1分數。
序列標註
PyTorch 英語
N
flair
978.01k
24
French Camembert Postag Model
基於Camembert-base的法語詞性標註模型,使用free-french-treebank數據集訓練
序列標註
Transformers 法語

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
基於XLM-Roberta-large架構微調的西班牙語命名實體識別模型,在CoNLL-2002數據集上表現優異。
序列標註
Transformers 西班牙語

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
基於NusaBert-v1.3在印尼語NER任務上微調的命名實體識別模型
序列標註
Transformers 其他

N
cahya
759.09k
3
Ner English Large
Flair框架內置的英文4類大型NER模型,基於文檔級XLM-R嵌入和FLERT技術,在CoNLL-03數據集上F1分數達94.36。
序列標註
PyTorch 英語
N
flair
749.04k
44
Punctuate All
MIT
基於xlm-roberta-base微調的多語言標點符號預測模型,支持12種歐洲語言的標點符號自動補全
序列標註
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
基於xlm-roberta-base微調的日語命名實體識別模型
序列標註
Transformers 支持多種語言

X
tsmatz
630.71k
25
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98