Fr Core News Lg
Large French language processing model provided by spaCy, optimized for CPU, supporting multiple NLP tasks
Downloads 1,572
Release Time : 3/2/2022
Model Overview
This is a comprehensive French natural language processing pipeline, including POS tagging, named entity recognition, dependency parsing, lemmatization, and more. The model is trained on high-quality French corpora and is suitable for processing news domain texts.
Model Features
Multi-task processing capability
A single model supports multiple NLP tasks such as named entity recognition, POS tagging, dependency parsing, and lemmatization.
CPU optimization
Optimized for CPU usage scenarios, capable of efficient operation without requiring a GPU.
High-quality vector representations
Includes 500,000 pre-trained word vectors (300 dimensions), providing rich semantic representations.
Comprehensive morphological analysis
Supports detailed analysis of French morphological features, including gender, number, tense, etc.
Model Capabilities
Named entity recognition
POS tagging
Morphological analysis
Lemmatization
Dependency parsing
Sentence segmentation
Use Cases
Text analysis
News content analysis
Extract named entities (people, places, organizations, etc.) from French news articles
NER F-score reached 0.839
Syntax analysis
Analyze the grammatical structure and POS tagging of French sentences
UPOS tagging accuracy reached 0.973
Information extraction
Structured data extraction
Extract structured information from unstructured French texts
🚀 fr_core_news_lg
A French language processing pipeline optimized for CPU, offering high - performance token classification.
📚 Documentation
Details: https://spacy.io/models/fr#fr_core_news_lg
This French pipeline is optimized for CPU. Its components include tok2vec, morphologizer, parser, senter, ner, attribute_ruler, and lemmatizer.
Property | Details |
---|---|
Name | fr_core_news_lg |
Version | 3.7.0 |
spaCy | >=3.7.0,<3.8.0 |
Default Pipeline | tok2vec , morphologizer , parser , attribute_ruler , lemmatizer , ner |
Components | tok2vec , morphologizer , parser , senter , attribute_ruler , lemmatizer , ner |
Vectors | 500000 keys, 500000 unique vectors (300 dimensions) |
Sources | UD French Sequoia v2.8 (Candito, Marie; Seddah, Djamé; Perrier, Guy; Guillaume, Bruno) WikiNER (Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, James R Curran) spaCy lookups data (Explosion) Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia) (Explosion) |
License | LGPL-LR |
Author | Explosion |
Label Scheme
View label scheme (237 labels for 3 components)
Component | Labels |
---|---|
morphologizer |
POS=PROPN , Gender=Fem|Number=Sing|POS=DET|PronType=Dem , Gender=Fem|Number=Sing|POS=NOUN , Number=Plur|POS=PRON|Person=1 , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , POS=SCONJ , POS=ADP , Definite=Def|Gender=Masc|Number=Sing|POS=DET|PronType=Art , NumType=Ord|POS=ADJ , Gender=Masc|Number=Sing|POS=NOUN , POS=PUNCT , Gender=Masc|Number=Sing|POS=PROPN , Number=Plur|POS=ADJ , Gender=Masc|Number=Plur|POS=NOUN , Definite=Ind|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Number=Sing|POS=ADJ , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Imp|VerbForm=Fin , POS=ADV , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Past|VerbForm=Fin , Gender=Fem|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Definite=Def|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Gender=Fem|Number=Sing|POS=PROPN , Definite=Def|Number=Sing|POS=DET|PronType=Art , NumType=Card|POS=NUM , Definite=Def|Number=Plur|POS=DET|PronType=Art , Gender=Masc|Number=Plur|POS=ADJ , POS=CCONJ , Gender=Fem|Number=Plur|POS=NOUN , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Past|VerbForm=Fin , Gender=Masc|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part , Gender=Fem|Number=Plur|POS=ADJ , POS=ADJ , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Past|VerbForm=Fin , POS=PRON|PronType=Rel , Number=Sing|POS=DET|Poss=Yes , Definite=Def|Gender=Masc|Number=Sing|POS=ADP|PronType=Art , Definite=Def|Number=Plur|POS=ADP|PronType=Art , Definite=Ind|Number=Plur|POS=DET|PronType=Art , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Past|VerbForm=Fin , Gender=Masc|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , POS=VERB|VerbForm=Inf , Gender=Fem|Number=Sing|POS=ADJ , Gender=Masc|Number=Sing|POS=PRON|Person=3 , Number=Plur|POS=DET , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Gender=Masc|Number=Sing|POS=ADJ , Gender=Masc|Number=Sing|POS=DET|PronType=Dem , POS=ADV|PronType=Int , POS=VERB|Tense=Pres|VerbForm=Part , Gender=Fem|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part , Definite=Ind|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Gender=Masc|POS=ADJ , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Fut|VerbForm=Fin , Number=Plur|POS=DET|Poss=Yes , POS=AUX|VerbForm=Inf , Gender=Masc|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Gender=Masc|POS=VERB|Tense=Past|VerbForm=Part , POS=ADV|Polarity=Neg , Definite=Ind|Number=Sing|POS=DET|PronType=Art , Gender=Fem|Number=Sing|POS=PRON|Person=3 , POS=PRON|Person=3|Reflex=Yes , Gender=Masc|POS=NOUN , POS=AUX|Tense=Past|VerbForm=Part , POS=PRON|Person=3 , Number=Plur|POS=NOUN , NumType=Ord|Number=Sing|POS=ADJ , POS=VERB|Tense=Past|VerbForm=Part , POS=AUX|Tense=Pres|VerbForm=Part , Gender=Masc|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part , Number=Sing|POS=PRON|Person=3 , Number=Sing|POS=NOUN , Gender=Masc|Number=Plur|POS=PRON|Person=3 , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Imp|VerbForm=Fin , Gender=Fem|NumType=Ord|Number=Sing|POS=ADJ , Number=Plur|POS=PROPN , Number=Sing|POS=PROPN , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Imp|VerbForm=Fin , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Gender=Masc|Number=Plur|POS=PRON|PronType=Dem , Gender=Masc|Number=Sing|POS=DET , Gender=Fem|Number=Sing|POS=DET|Poss=Yes , Gender=Masc|POS=PRON , POS=NOUN , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Fut|VerbForm=Fin , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Fut|VerbForm=Fin , Mood=Ind|Number=Plur|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Number=Plur|POS=PRON , Gender=Masc|NumType=Ord|Number=Plur|POS=ADJ , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Fut|VerbForm=Fin , Gender=Fem|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Number=Sing|POS=PRON , Number=Sing|POS=PRON|PronType=Dem , Mood=Ind|POS=VERB|VerbForm=Fin , Number=Plur|POS=DET|PronType=Dem , Gender=Masc|Number=Sing|POS=PRON|Person=3|PronType=Prs , Gender=Masc|Number=Plur|POS=PRON|Person=3|PronType=Prs , Gender=Masc|Number=Sing|POS=PRON , Gender=Masc|Number=Sing|POS=PRON|Person=3|PronType=Dem , Number=Sing|POS=PRON|Person=2|PronType=Prs , Gender=Masc|Number=Sing|POS=PRON|PronType=Rel , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Imp|VerbForm=Fin , Mood=Sub|Number=Sing|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Gender=Masc|NumType=Ord|Number=Sing|POS=ADJ , POS=PRON , POS=NUM , Gender=Fem|POS=NOUN , POS=SPACE , Gender=Fem|Number=Plur|POS=PRON , Number=Plur|POS=PRON|Person=3 , Number=Sing|POS=VERB|Tense=Past|VerbForm=Part , Number=Sing|POS=PRON|Person=1 , Mood=Ind|Number=Sing|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Mood=Sub|Number=Sing|POS=VERB|Person=3|Tense=Past|VerbForm=Fin , Gender=Fem|Number=Sing|POS=PRON , Gender=Fem|Number=Sing|POS=PRON|Person=3|PronType=Prs , Mood=Sub|Number=Sing|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , POS=INTJ , Number=Plur|POS=PRON|Person=2 , NumType=Card|POS=PRON , Definite=Ind|Gender=Fem|Number=Plur|POS=DET|PronType=Art , Gender=Fem|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part , NumType=Card|POS=NOUN , POS=PRON|PronType=Int , Gender=Fem|Number=Plur|POS=PRON|Person=3 , Gender=Fem|Number=Sing|POS=DET , Mood=Cnd|Number=Sing|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Gender=Fem|Number=Plur|POS=DET , Mood=Sub|Number=Plur|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Definite=Ind|Gender=Masc|Number=Plur|POS=DET|PronType=Art , Mood=Cnd|Number=Sing|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Gender=Masc|Number=Sing|POS=PRON|PronType=Dem , Gender=Masc|Number=Plur|POS=PROPN , Mood=Cnd|Number=Plur|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Gender=Fem|Number=Sing|POS=PRON|PronType=Dem , Number=Sing|POS=DET , Gender=Masc|NumType=Card|Number=Plur|POS=NOUN , Gender=Fem|Number=Plur|POS=PRON|PronType=Dem , Mood=Ind|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Gender=Fem|POS=PRON , Gender=Masc|POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Gender=Fem|Number=Sing|POS=PRON|PronType=Rel , Mood=Ind|Number=Sing|POS=AUX|Person=1|Tense=Imp|VerbForm=Fin , Mood=Cnd|Number=Plur|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Mood=Ind|Number=Sing|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , Gender=Masc|Number=Sing|POS=AUX|Tense=Past|VerbForm=Part , POS=X , POS=SYM , Mood=Imp|Number=Plur|POS=VERB|Person=2|Tense=Pres|VerbForm=Fin , Mood=Ind|Number=Plur|POS=VERB|Person=2|Tense=Pres|VerbForm=Fin , Gender=Masc|Number=Sing|POS=DET|PronType=Int , Gender=Fem|Number=Plur|POS=DET|PronType=Int , POS=DET , Gender=Masc|Number=Plur|POS=PRON , Mood=Sub|Number=Plur|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Mood=Ind|POS=VERB|Person=3|VerbForm=Fin , Number=Sing|POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Mood=Cnd|Number=Plur|POS=VERB|Person=2|Tense=Pres|VerbForm=Fin , Mood=Ind|Number=Plur|POS=AUX|Person=2|Tense=Pres|VerbForm=Fin , Gender=Fem|Number=Sing|POS=DET|PronType=Int , Gender=Masc|Number=Plur|POS=DET , Gender=Fem|Number=Plur|POS=PRON|PronType=Rel , Number=Plur|POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Gender=Masc|Number=Plur|POS=PRON|PronType=Rel , POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Gender=Fem|NumType=Ord|Number=Plur|POS=ADJ , Mood=Ind|Number=Plur|POS=VERB|Person=2|Tense=Fut|VerbForm=Fin , Mood=Imp|POS=VERB|Tense=Pres|VerbForm=Fin , Number=Plur|POS=PRON|Person=2|Reflex=Yes , Mood=Cnd|Number=Sing|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Number=Plur|POS=PRON|Person=1|Reflex=Yes , Gender=Masc|NumType=Card|Number=Sing|POS=NOUN , Mood=Ind|Number=Plur|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , Mood=Ind|Number=Plur|POS=AUX|Person=1|Tense=Fut|VerbForm=Fin , Mood=Ind|Number=Plur|POS=VERB|Person=1|Tense=Fut|VerbForm=Fin , Number=Sing|POS=PRON|Person=1|Reflex=Yes , Mood=Ind|Number=Plur|POS=VERB|Person=1|Tense=Imp|VerbForm=Fin , Mood=Ind|Number=Plur|POS=AUX|Person=1|Tense=Imp|VerbForm=Fin , Mood=Ind|Number=Sing|POS=VERB|Person=1|Tense=Imp|VerbForm=Fin , Mood=Sub|Number=Sing|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Gender=Masc|POS=PROPN , Mood=Cnd|Number=Plur|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Number=Plur|POS=PRON|Person=1|PronType=Prs , Mood=Sub|Number=Sing|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , Number=Plur|POS=PRON|Person=2|PronType=Prs , Mood=Ind|Number=Sing|POS=VERB|Person=1|Tense=Fut|VerbForm=Fin , Gender=Fem|Number=Plur|POS=PRON|Person=3|PronType=Prs , Number=Sing|POS=PRON|Person=1|PronType=Prs , Mood=Cnd|Number=Sing|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , Mood=Sub|Number=Plur|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , Mood=Imp|Number=Plur|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Mood=Sub|Number=Plur|POS=AUX|Person=2|Tense=Pres|VerbForm=Fin , Mood=Ind|Number=Plur|POS=VERB|Person=2|Tense=Imp|VerbForm=Fin , Mood=Ind|Number=Sing|POS=AUX|Person=2|Tense=Imp|VerbForm=Fin , Number=Plur|POS=VERB|Tense=Past|VerbForm=Part , Gender=Fem|Number=Plur|POS=PROPN , Gender=Masc|NumType=Card|POS=NUM |
parser |
ROOT , acl , acl:relcl , advcl , advmod , amod , appos , aux:pass , aux:tense , case , cc , ccomp , conj , cop , dep , det , expl:comp , expl:pass , expl:subj , fixed , flat:foreign , flat:name , iobj , mark , nmod , nsubj , nsubj:pass , nummod , obj , obl:agent , obl:arg , obl:mod , parataxis , punct , vocative , xcomp |
ner |
LOC , MISC , ORG , PER |
Accuracy
Type | Score |
---|---|
TOKEN_ACC |
99.80 |
TOKEN_P |
98.44 |
TOKEN_R |
98.96 |
TOKEN_F |
98.7 |
🔧 Technical Details
Model Index
- Name: fr_core_news_lg
- Results:
- Task: NER (Token - Classification)
- Metrics:
- NER Precision: 0.8398572946
- NER Recall: 0.83869741
- NER F Score: 0.8392769516
- Metrics:
- Task: TAG (Token - Classification)
- Metrics:
- TAG (XPOS) Accuracy: 0.9446562919
- Metrics:
- Task: POS (Token - Classification)
- Metrics:
- POS (UPOS) Accuracy: 0.9734102855
- Metrics:
- Task: MORPH (Token - Classification)
- Metrics:
- Morph (UFeats) Accuracy: 0.9674260386
- Metrics:
- Task: LEMMA (Token - Classification)
- Metrics:
- Lemma Accuracy: 0.9135840526
- Metrics:
- Task: UNLABELED_DEPENDENCIES (Token - Classification)
- Metrics:
- Unlabeled Attachment Score (UAS): 0.9028935185
- Metrics:
- Task: LABELED_DEPENDENCIES (Token - Classification)
- Metrics:
- Labeled Attachment Score (LAS): 0.8654090962
- Metrics:
- Task: SENTS (Token - Classification)
- Metrics:
- Sentences F - Score: 0.8735083532
- Metrics:
- Task: NER (Token - Classification)
📄 License
This project is licensed under the LGPL-LR
license.
Indonesian Roberta Base Posp Tagger
MIT
This is a POS tagging model fine-tuned based on the Indonesian RoBERTa model, trained on the indonlu dataset for Indonesian text POS tagging tasks.
Sequence Labeling
Transformers Other

I
w11wo
2.2M
7
Bert Base NER
MIT
BERT fine-tuned named entity recognition model capable of identifying four entity types: Location (LOC), Organization (ORG), Person (PER), and Miscellaneous (MISC)
Sequence Labeling English
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
This model is a sequence labeling model fine-tuned on RoBERTa, designed to identify and remove Protected Health Information (PHI/PII) from medical records.
Sequence Labeling
Transformers Supports Multiple Languages

D
obi
1.1M
33
Ner English Fast
Flair's built-in fast English 4-class named entity recognition model, based on Flair embeddings and LSTM-CRF architecture, achieving an F1 score of 92.92 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
978.01k
24
French Camembert Postag Model
French POS tagging model based on Camembert-base, trained using the free-french-treebank dataset
Sequence Labeling
Transformers French

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
A Spanish named entity recognition model fine-tuned based on the XLM-Roberta-large architecture, with excellent performance on the CoNLL-2002 dataset.
Sequence Labeling
Transformers Spanish

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
Named entity recognition model fine-tuned on Indonesian NER tasks based on NusaBert-v1.3
Sequence Labeling
Transformers Other

N
cahya
759.09k
3
Ner English Large
Flair framework's built-in large English NER model for 4 entity types, utilizing document-level XLM-R embeddings and FLERT technique, achieving an F1 score of 94.36 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
749.04k
44
Punctuate All
MIT
A multilingual punctuation prediction model fine-tuned based on xlm-roberta-base, supporting automatic punctuation completion for 12 European languages
Sequence Labeling
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
Japanese named entity recognition model fine-tuned based on xlm-roberta-base
Sequence Labeling
Transformers Supports Multiple Languages

X
tsmatz
630.71k
25
Featured Recommended AI Models