Ko Core News Sm
模型概述
這是一個韓語自然語言處理模型,提供分詞、詞性標註、依存句法分析、命名實體識別等基礎NLP功能。模型針對CPU使用進行了優化,適合處理韓語文本數據。
模型特點
CPU優化
專門針對CPU使用進行了優化,適合在沒有GPU的環境下運行
全面NLP功能
提供從基礎分詞到命名實體識別的完整NLP處理流程
高精度句子分割
句子分割F值達到99.93%,能準確識別句子邊界
模型能力
分詞
詞性標註
依存句法分析
命名實體識別
詞形還原
句子分割
使用案例
文本處理
韓語文本分析
對韓語新聞、社交媒體文本進行語法分析和結構解析
準確識別句子結構和詞性關係
信息提取
從韓語文本中提取人名、組織名、地點等命名實體
NER F值達到71.11%
語言研究
韓語語法研究
分析韓語句法結構和詞形變化
提供詳細的詞性標註和依存關係分析
🚀 ko_core_news_sm模型
ko_core_news_sm
是一款針對韓語進行優化的自然語言處理模型,專為CPU運行環境設計。它在命名實體識別(NER)、詞性標註(POS)等多個任務上表現出色,能有效處理韓語的語言結構和語義信息。
✨ 主要特性
- 多任務支持:支持命名實體識別(NER)、詞性標註(TAG、POS)、詞形還原(LEMMA)、依存句法分析(UNLABELED_DEPENDENCIES、LABELED_DEPENDENCIES)和句子分割(SENTS)等多種任務。
- CPU優化:針對CPU進行了優化,能夠在普通CPU環境下高效運行。
- 豐富的標註體系:提供了詳細的標籤體系,涵蓋了多種語言成分和語法結構。
📦 安裝指南
文檔未提及安裝步驟,跳過該章節。
💻 使用示例
文檔未提供代碼示例,跳過該章節。
📚 詳細文檔
模型詳情
- 詳情鏈接:https://spacy.io/models/ko#ko_core_news_sm
- 適用場景:韓語自然語言處理,如文本分類、信息提取等。
模型信息
屬性 | 詳情 |
---|---|
模型類型 | ko_core_news_sm |
版本 | 3.7.0 |
spaCy版本要求 | >=3.7.0,<3.8.0 |
默認管道 | tok2vec , tagger , morphologizer , parser , lemmatizer , attribute_ruler , ner |
組件 | tok2vec , tagger , morphologizer , parser , lemmatizer , senter , attribute_ruler , ner |
向量 | 0 個鍵,0 個唯一向量(0 維) |
數據源 | UD Korean Kaist v2.8 (Choi, Jinho; Han, Na - Rae; Hwang, Jena; Chun, Jayeol) KLUE v1.1.0 (Sungjoon Park, Jihyung Moon, Sungdong Kim, Won Ik Cho, Jiyoon Han, Jangwon Park, Chisung Song, Junseong Kim, Youngsook Song, Taehwan Oh, Joohong Lee, Juhyun Oh, Sungwon Ryu, Younghoon Jeong, Inkwon Lee, Sangwoo Seo, Dongjun Lee, Hyunwoo Kim, Myeonghwa Lee, Seongbo Jang, Seungwon Do, Sunkyoung Kim, Kyungtae Lim, Jongwon Lee, Kyumin Park, Jamin Shin, Seonghyun Kim, Lucy Park, Alice Oh, Jung - Woo Ha, Kyunghyun Cho) |
許可證 | CC BY - SA 4.0 |
作者 | Explosion |
標籤體系
查看標籤體系(4個組件共2028個標籤)
組件 | 標籤 |
---|---|
tagger |
_SP , ecs , etm , f , f+f+jcj , f+f+jcs , f+f+jct , f+f+jxt , f+jca , f+jca+jp+ecc , f+jca+jp+ep+ef , f+jca+jxc , f+jca+jxc+jcm , f+jca+jxt , f+jcj , f+jcm , f+jco , f+jcs , f+jct , f+jct+jcm , f+jp+ef , f+jp+ep+ef , f+jp+etm , f+jxc , f+jxt , f+ncn , f+ncn+jcm , f+ncn+jcs , f+ncn+jp+ecc , f+ncn+jxt , f+ncpa+jcm , f+npp+jcs , f+nq , f+xsn , f+xsn+jco , f+xsn+jxt , ii , jca , jca+jcm , jca+jxc , jca+jxt , jcc , jcj , jcm , jco , jcr , jcr+jxc , jcs , jct , jct+jcm , jct+jxt , jp+ecc , jp+ecs , jp+ef , jp+ef+jcr , jp+ef+jcr+jxc , jp+ep+ecs , jp+ep+ef , jp+ep+etm , jp+ep+etn , jp+etm , jp+etn , jp+etn+jco , jp+etn+jxc , jxc , jxc+jca , jxc+jco , jxc+jcs , jxt , mad , mad+jxc , mad+jxt , mag , mag+jca , mag+jcm , mag+jcs , mag+jp+ef+jcr , mag+jxc , mag+jxc+jxc , mag+jxt , mag+xsn , maj , maj+jxc , maj+jxt , mma , mmd , nbn , nbn+jca , nbn+jca+jcj , nbn+jca+jcm , nbn+jca+jp+ef , nbn+jca+jxc , nbn+jca+jxt , nbn+jcc , nbn+jcj , nbn+jcm , nbn+jco , nbn+jcr , nbn+jcs , nbn+jct , nbn+jct+jcm , nbn+jct+jxt , nbn+jp+ecc , nbn+jp+ecs , nbn+jp+ecs+jca , nbn+jp+ecs+jcm , nbn+jp+ecs+jco , nbn+jp+ecs+jxc , nbn+jp+ecs+jxt , nbn+jp+ecx , nbn+jp+ef , nbn+jp+ef+jca , nbn+jp+ef+jco , nbn+jp+ef+jcr , nbn+jp+ef+jcr+jxc , nbn+jp+ef+jcr+jxt , nbn+jp+ef+jcs , nbn+jp+ef+jxc , nbn+jp+ef+jxc+jco , nbn+jp+ef+jxf , nbn+jp+ef+jxt , nbn+jp+ep+ecc , nbn+jp+ep+ecs , nbn+jp+ep+ecs+jxc , nbn+jp+ep+ef , nbn+jp+ep+ef+jcr , nbn+jp+ep+etm , nbn+jp+ep+etn , nbn+jp+ep+etn+jco , nbn+jp+ep+etn+jcs , nbn+jp+etm , nbn+jp+etn , nbn+jp+etn+jca , nbn+jp+etn+jca+jxt , nbn+jp+etn+jco , nbn+jp+etn+jcs , nbn+jp+etn+jxc , nbn+jp+etn+jxt , nbn+jxc , nbn+jxc+jca , nbn+jxc+jca+jxc , nbn+jxc+jca+jxt , nbn+jxc+jcc , nbn+jxc+jcm , nbn+jxc+jco , nbn+jxc+jcs , nbn+jxc+jp+ef , nbn+jxc+jxc , nbn+jxc+jxt , nbn+jxt , nbn+nbn , nbn+nbn+jp+ef , nbn+xsm+ecs , nbn+xsm+ef , nbn+xsm+ep+ef , nbn+xsm+ep+ef+jcr , nbn+xsm+etm , nbn+xsn , nbn+xsn+jca , nbn+xsn+jca+jp+ef+jcr , nbn+xsn+jca+jxc , nbn+xsn+jca+jxt , nbn+xsn+jcm , nbn+xsn+jco , nbn+xsn+jcs , nbn+xsn+jct , nbn+xsn+jp+ecc , nbn+xsn+jp+ecs , nbn+xsn+jp+ef , nbn+xsn+jp+ef+jcr , nbn+xsn+jp+ep+ef , nbn+xsn+jxc , nbn+xsn+jxt , nbn+xsv+etm , nbu , nbu+jca , nbu+jca+jxc , nbu+jca+jxt , nbu+jcc , nbu+jcc+jxc , nbu+jcj , nbu+jcm , nbu+jco , nbu+jcs , nbu+jct , nbu+jct+jxc , nbu+jp+ecc , nbu+jp+ecs , nbu+jp+ef , nbu+jp+ef+jcr , nbu+jp+ef+jxc , nbu+jp+ep+ecc , nbu+jp+ep+ecs , nbu+jp+ep+ef , nbu+jp+ep+ef+jcr , nbu+jp+ep+etm , nbu+jp+ep+etn+jco , nbu+jp+etm , nbu+jxc , nbu+jxc+jca , nbu+jxc+jcs , nbu+jxc+jp+ef , nbu+jxc+jp+ep+ef , nbu+jxc+jxt , nbu+jxt , nbu+ncn , nbu+ncn+jca , nbu+ncn+jcm , nbu+xsn , nbu+xsn+jca , nbu+xsn+jca+jxc , nbu+xsn+jca+jxt , nbu+xsn+jcm , nbu+xsn+jco , nbu+xsn+jcs , nbu+xsn+jp+ecs , nbu+xsn+jp+ep+ef , nbu+xsn+jxc , nbu+xsn+jxc+jxt , nbu+xsn+jxt , nbu+xsv+ecc , nbu+xsv+etm , ncn , ncn+f+ncpa+jco , ncn+jca , ncn+jca+jca , ncn+jca+jcc , ncn+jca+jcj , ncn+jca+jcm , ncn+jca+jcs , ncn+jca+jct , ncn+jca+jp+ecc , ncn+jca+jp+ecs , ncn+jca+jp+ef , ncn+jca+jp+ep+ef , ncn+jca+jp+etm , ncn+jca+jp+etn+jxt , ncn+jca+jxc , ncn+jca+jxc+jcc , ncn+jca+jxc+jcm , ncn+jca+jxc+jxc , ncn+jca+jxc+jxt , ncn+jca+jxt , ncn+jcc , ncn+jcc+jxc , ncn+jcj , ncn+jcj+jxt , ncn+jcm , ncn+jco , ncn+jcr , ncn+jcr+jxc , ncn+jcs , ncn+jcs+jxt , ncn+jct , ncn+jct+jcm , ncn+jct+jxc , ncn+jct+jxt , ncn+jcv , ncn+jp+ecc , ncn+jp+ecc+jct , ncn+jp+ecc+jxc , ncn+jp+ecs , ncn+jp+ecs+jcm , ncn+jp+ecs+jco , ncn+jp+ecs+jxc , ncn+jp+ecs+jxt , ncn+jp+ecx , ncn+jp+ef , ncn+jp+ef+jca , ncn+jp+ef+jcm , ncn+jp+ef+jco , ncn+jp+ef+jcr , ncn+jp+ef+jcr+jxc , ncn+jp+ef+jcr+jxt , ncn+jp+ef+jp+etm , ncn+jp+ef+jxc , ncn+jp+ef+jxf , ncn+jp+ef+jxt , ncn+jp+ep+ecc , ncn+jp+ep+ecs , ncn+jp+ep+ecs+jxc , ncn+jp+ep+ecx , ncn+jp+ep+ef , ncn+jp+ep+ef+jcr , ncn+jp+ep+ef+jcr+jxc , ncn+jp+ep+ef+jxc , ncn+jp+ep+ef+jxf , ncn+jp+ep+ef+jxt , ncn+jp+ep+ep+etm , ncn+jp+ep+etm , ncn+jp+ep+etn , ncn+jp+ep+etn+jca , ncn+jp+ep+etn+jca+jxc , ncn+jp+ep+etn+jco , ncn+jp+ep+etn+jcs , ncn+jp+ep+etn+jxt , ncn+jp+etm , ncn+jp+etn , ncn+jp+etn+jca , ncn+jp+etn+jca+jxc , ncn+jp+etn+jca+jxt , ncn+jp+etn+jco , ncn+jp+etn+jcs , ncn+jp+etn+jct , ncn+jp+etn+jxc , ncn+jp+etn+jxt , ncn+jxc , ncn+jxc+jca , ncn+jxc+jca+jxc , ncn+jxc+jca+jxt , ncn+jxc+jcc , ncn+jxc+jcm , ncn+jxc+jco , ncn+jxc+jcs , ncn+jxc+jct+jxt , ncn+jxc+jp+ef , ncn+jxc+jp+ef+jcr , ncn+jxc+jp+ep+ecs , ncn+jxc+jp+ep+ef , ncn+jxc+jp+etm , ncn+jxc+jxc , ncn+jxc+jxt , ncn+jxt , ncn+jxt+jcm , ncn+jxt+jxc , ncn+nbn , ncn+nbn+jca , ncn+nbn+jcm , ncn+nbn+jcs , ncn+nbn+jp+ecc , ncn+nbn+jp+ep+ef , ncn+nbn+jxc , ncn+nbn+jxt , ncn+nbu , ncn+nbu+jca , ncn+nbu+jcm , ncn+nbu+jco , ncn+nbu+jp+ef , ncn+nbu+jxc , ncn+nbu+ncn , ncn+ncn , ncn+ncn+jca , ncn+ncn+jca+jcc , ncn+ncn+jca+jcm , ncn+ncn+jca+jxc , ncn+ncn+jca+jxc+jcm , ncn+ncn+jca+jxc+jxc , ncn+ncn+jca+jxt , ncn+ncn+jcc , ncn+ncn+jcj , ncn+ncn+jcm , ncn+ncn+jco , ncn+ncn+jcr , ncn+ncn+jcs , ncn+ncn+jct , ncn+ncn+jct+jcm , ncn+ncn+jct+jxc , ncn+ncn+jct+jxt , ncn+ncn+jp+ecc , ncn+ncn+jp+ecs , ncn+ncn+jp+ef , ncn+ncn+jp+ef+jcm , ncn+ncn+jp+ef+jcr , ncn+ncn+jp+ef+jcs , ncn+ncn+jp+ep+ecc , ncn+ncn+jp+ep+ecs , ncn+ncn+jp+ep+ef , ncn+ncn+jp+ep+ef+jcr , ncn+ncn+jp+ep+ep+etm , ncn+ncn+jp+ep+etm , ncn+ncn+jp+ep+etn , ncn+ncn+jp+etm , ncn+ncn+jp+etn , ncn+ncn+jp+etn+jca , ncn+ncn+jp+etn+jco , ncn+ncn+jp+etn+jxc , ncn+ncn+jxc , ncn+ncn+jxc+jca , ncn+ncn+jxc+jcc , ncn+ncn+jxc+jcm , ncn+ncn+jxc+jco , ncn+ncn+jxc+jcs , ncn+ncn+jxc+jxc , ncn+ncn+jxt , ncn+ncn+nbn , ncn+ncn+ncn , ncn+ncn+ncn+jca , ncn+ncn+ncn+jca+jcm , ncn+ncn+ncn+jca+jxt , ncn+ncn+ncn+jcj , ncn+ncn+ncn+jcm , ncn+ncn+ncn+jco , ncn+ncn+ncn+jcs , ncn+ncn+ncn+jct+jxt , ncn+ncn+ncn+jp+etn+jxc , ncn+ncn+ncn+jxt , ncn+ncn+ncn+ncn+jca , ncn+ncn+ncn+ncn+jca+jxt , ncn+ncn+ncn+ncn+jco , ncn+ncn+ncn+xsn+jp+etm , ncn+ncn+ncpa , ncn+ncn+ncpa+jca , ncn+ncn+ncpa+jcm , ncn+ncn+ncpa+jco , ncn+ncn+ncpa+jcs , ncn+ncn+ncpa+jxc , ncn+ncn+ncpa+jxt , ncn+ncn+ncpa+ncn , ncn+ncn+ncpa+ncn+jca , ncn+ncn+ncpa+ncn+jcj , ncn+ncn+ncpa+ncn+jcm , ncn+ncn+ncpa+ncn+jxt , ncn+ncn+xsn , ncn+ncn+xsn+jca , ncn+ncn+xsn+jca+jxt , ncn+ncn+xsn+jcj , ncn+ncn+xsn+jcm , ncn+ncn+xsn+jco , ncn+ncn+xsn+jcs , ncn+ncn+xsn+jct , ncn+ncn+xsn+jp+ecs , ncn+ncn+xsn+jp+ep+ef , ncn+ncn+xsn+jp+etm , ncn+ncn+xsn+jxc , ncn+ncn+xsn+jxc+jcs , ncn+ncn+xsn+jxt , ncn+ncn+xsv+ecc , ncn+ncn+xsv+etm , ncn+ncpa , ncn+ncpa+jca , ncn+ncpa+jca+jcm , ncn+ncpa+jca+jxc , ncn+ncpa+jca+jxt , ncn+ncpa+jcc , ncn+ncpa+jcj , ncn+ncpa+jcm , ncn+ncpa+jco , ncn+ncpa+jcr , ncn+ncpa+jcs , ncn+ncpa+jct , ncn+ncpa+jct+jcm , ncn+ncpa+jct+jxt , ncn+ncpa+jp+ecc , ncn+ncpa+jp+ecc+jxc , ncn+ncpa+jp+ecs , ncn+ncpa+jp+ecs+jxc , ncn+ncpa+jp+ef , ncn+ncpa+jp+ef+jcr , ncn+ncpa+jp+ef+jcr+jxc , ncn+ncpa+jp+ep+ef , ncn+ncpa+jp+ep+etm , ncn+ncpa+jp+ep+etn , ncn+ncpa+jp+etm , ncn+ncpa+jxc , ncn+ncpa+jxc+jca+jxc , ncn+ncpa+jxc+jco , ncn+ncpa+jxc+jcs , ncn+ncpa+jxt , ncn+ncpa+nbn+jcs , ncn+ncpa+ncn , ncn+ncpa+ncn+jca , ncn+ncpa+ncn+jca+jcm , ncn+ncpa+ncn+jca+jxc , ncn+ncpa+ncn+jca+jxt , ncn+ncpa+ncn+jcj , ncn+ncpa+ncn+jcm , ncn+ncpa+ncn+jco , ncn+ncpa+ncn+jcs , ncn+ncpa+ncn+jct , ncn+ncpa+ncn+jct+jcm , ncn+ncpa+ncn+jp+ef+jcr , ncn+ncpa+ncn+jp+ep+etm , ncn+ncpa+ncn+jxc , ncn+ncpa+ncn+jxt , ncn+ncpa+ncn+xsn+jcm , ncn+ncpa+ncn+xsn+jxt , ncn+ncpa+ncpa , ncn+ncpa+ncpa+jca , ncn+ncpa+ncpa+jcj , ncn+ncpa+ncpa+jcm , ncn+ncpa+ncpa+jco , ncn+ncpa+ncpa+jcs , ncn+ncpa+ncpa+jp+ep+ef , ncn+ncpa+ncpa+jxt , ncn+ncpa+ncpa+ncn , ncn+ncpa+xsn , ncn+ncpa+xsn+jcm , ncn+ncpa+xsn+jco , ncn+ncpa+xsn+jcs , ncn+ncpa+xsn+jp+ecc , ncn+ncpa+xsn+jp+etm , ncn+ncpa+xsn+jxt , ncn+ncpa+xsv+ecc , ncn+ncpa+xsv+ecs , ncn+ncpa+xsv+ecx , ncn+ncpa+xsv+ecx+px+etm , ncn+ncpa+xsv+ef , ncn+ncpa+xsv+ef+jcm , ncn+ncpa+xsv+ef+jcr , ncn+ncpa+xsv+etm , (truncated: full list in pipeline meta) |
morphologizer |
POS=CCONJ , POS=ADV , POS=SCONJ , POS=DET , POS=NOUN , POS=VERB , POS=ADJ , POS=PUNCT , POS=SPACE , POS=AUX , POS=PRON , POS=PROPN , POS=NUM , POS=INTJ , POS=PART , POS=X , POS=ADP , POS=SYM |
parser |
ROOT , acl , advcl , advmod , amod , appos , aux , case , cc , ccomp , compound , conj , cop , csubj , dep , det , dislocated , fixed , flat , iobj , mark , nmod , nsubj , nummod , obj , obl , punct , xcomp |
ner |
DT , LC , OG , PS , QT , TI |
準確率
類型 | 得分 |
---|---|
TOKEN_ACC |
100.00 |
TOKEN_P |
100.00 |
TOKEN_R |
100.00 |
TOKEN_F |
100.00 |
TAG_ACC |
73.06 |
POS_ACC |
85.82 |
SENTS_P |
99.90 |
SENTS_R |
99.95 |
SENTS_F |
99.93 |
DEP_UAS |
73.61 |
DEP_LAS |
65.59 |
LEMMA_ACC |
83.57 |
ENTS_P |
77.04 |
ENTS_R |
66.03 |
ENTS_F |
71.11 |
🔧 技術細節
文檔未提供技術實現細節,跳過該章節。
📄 許可證
本模型使用的許可證為 CC BY - SA 4.0
。
Indonesian Roberta Base Posp Tagger
MIT
這是一個基於印尼語RoBERTa模型微調的詞性標註模型,在indonlu數據集上訓練,用於印尼語文本的詞性標註任務。
序列標註
Transformers 其他

I
w11wo
2.2M
7
Bert Base NER
MIT
基於BERT微調的命名實體識別模型,可識別四類實體:地點(LOC)、組織機構(ORG)、人名(PER)和雜項(MISC)
序列標註 英語
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
該模型是基於RoBERTa微調的序列標註模型,用於識別和移除醫療記錄中的受保護健康信息(PHI/PII)。
序列標註
Transformers 支持多種語言

D
obi
1.1M
33
Ner English Fast
Flair自帶的英文快速4類命名實體識別模型,基於Flair嵌入和LSTM-CRF架構,在CoNLL-03數據集上達到92.92的F1分數。
序列標註
PyTorch 英語
N
flair
978.01k
24
French Camembert Postag Model
基於Camembert-base的法語詞性標註模型,使用free-french-treebank數據集訓練
序列標註
Transformers 法語

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
基於XLM-Roberta-large架構微調的西班牙語命名實體識別模型,在CoNLL-2002數據集上表現優異。
序列標註
Transformers 西班牙語

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
基於NusaBert-v1.3在印尼語NER任務上微調的命名實體識別模型
序列標註
Transformers 其他

N
cahya
759.09k
3
Ner English Large
Flair框架內置的英文4類大型NER模型,基於文檔級XLM-R嵌入和FLERT技術,在CoNLL-03數據集上F1分數達94.36。
序列標註
PyTorch 英語
N
flair
749.04k
44
Punctuate All
MIT
基於xlm-roberta-base微調的多語言標點符號預測模型,支持12種歐洲語言的標點符號自動補全
序列標註
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
基於xlm-roberta-base微調的日語命名實體識別模型
序列標註
Transformers 支持多種語言

X
tsmatz
630.71k
25
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98