Wav2vec2 Large Xlsr Vietnamese
基於facebook/wav2vec2-large-xlsr-53模型微調的越南語自動語音識別模型
下載量 22
發布時間 : 3/2/2022
模型概述
該模型是針對越南語優化的自動語音識別(ASR)模型,基於XLSR Wav2Vec2架構,使用Common Voice、FOSD和VIVOS數據集進行微調。
模型特點
多數據集微調
使用Common Voice、FOSD和VIVOS三個越南語數據集進行訓練,提高模型適應性
16kHz採樣率支持
優化處理16kHz採樣率的語音輸入
無需語言模型
可直接使用,無需額外語言模型支持
模型能力
越南語語音識別
自動語音轉文本
使用案例
語音轉寫
越南語語音轉錄
將越南語語音內容轉換為文本
在Common Voice越南語測試集上WER為49.59%
語音助手
越南語語音命令識別
用於越南語語音助手或智能家居設備的語音命令識別
🚀 Wav2Vec2-Large-XLSR-53-越南語
本項目基於 facebook/wav2vec2-large-xlsr-53 模型,使用 Common Voice、FOSD 和 VIVOS 越南語數據集進行微調。使用該模型時,請確保語音輸入的採樣率為 16kHz。
📋 基本信息
屬性 | 詳情 |
---|---|
模型類型 | 基於 XLSR 的 Wav2Vec2 越南語語音識別模型 |
訓練數據 | Common Voice、FOSD(https://data.mendeley.com/datasets/k9sxg2twv4/4)、VIVOS(https://ailab.hcmus.edu.vn/vivos) |
評估指標 | 詞錯誤率(WER) |
標籤 | 音頻、自動語音識別、語音、XLSR 微調周 |
許可證 | Apache-2.0 |
🚀 快速開始
本模型可直接使用(無需語言模型),具體使用方法如下。
💻 使用示例
基礎用法
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
ENCODER = {
"ia ": "iê ",
"ìa ": "iề ",
"ía ": "iế ",
"ỉa ": "iể ",
"ĩa ": "iễ ",
"ịa ": "iệ ",
"ya ": "yê ",
"ỳa ": "yề ",
"ýa ": "yế ",
"ỷa ": "yể ",
"ỹa ": "yễ ",
"ỵa ": "yệ ",
"ua ": "uô ",
"ùa ": "uồ ",
"úa ": "uố ",
"ủa ": "uổ ",
"ũa ": "uỗ ",
"ụa ": "uộ ",
"ưa ": "ươ ",
"ừa ": "ườ ",
"ứa ": "ướ ",
"ửa ": "ưở ",
"ữa ": "ưỡ ",
"ựa ": "ượ ",
"ke": "ce",
"kè": "cè",
"ké": "cé",
"kẻ": "cẻ",
"kẽ": "cẽ",
"kẹ": "cẹ",
"kê": "cê",
"kề": "cề",
"kế": "cế",
"kể": "cể",
"kễ": "cễ",
"kệ": "cệ",
"ki": "ci",
"kì": "cì",
"kí": "cí",
"kỉ": "cỉ",
"kĩ": "cĩ",
"kị": "cị",
"ky": "cy",
"kỳ": "cỳ",
"ký": "cý",
"kỷ": "cỷ",
"kỹ": "cỹ",
"kỵ": "cỵ",
"ghe": "ge",
"ghè": "gè",
"ghé": "gé",
"ghẻ": "gẻ",
"ghẽ": "gẽ",
"ghẹ": "gẹ",
"ghê": "gê",
"ghề": "gề",
"ghế": "gế",
"ghể": "gể",
"ghễ": "gễ",
"ghệ": "gệ",
"ngh": "\x80",
"uyê": "\x96",
"uyề": "\x97",
"uyế": "\x98",
"uyể": "\x99",
"uyễ": "\x9a",
"uyệ": "\x9b",
"ng": "\x81",
"ch": "\x82",
"gh": "\x83",
"nh": "\x84",
"gi": "\x85",
"ph": "\x86",
"kh": "\x87",
"th": "\x88",
"tr": "\x89",
"uy": "\x8a",
"uỳ": "\x8b",
"uý": "\x8c",
"uỷ": "\x8d",
"uỹ": "\x8e",
"uỵ": "\x8f",
"iê": "\x90",
"iề": "\x91",
"iế": "\x92",
"iể": "\x93",
"iễ": "\x94",
"iệ": "\x95",
"uô": "\x9c",
"uồ": "\x9d",
"uố": "\x9e",
"uổ": "\x9f",
"uỗ": "\xa0",
"uộ": "\xa1",
"ươ": "\xa2",
"ườ": "\xa3",
"ướ": "\xa4",
"ưở": "\xa5",
"ưỡ": "\xa6",
"ượ": "\xa7",
}
def decode_string(x):
for k, v in list(reversed(list(ENCODER.items()))):
x = x.replace(v, k)
return x
test_dataset = load_dataset("common_voice", "vi", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
model = Wav2Vec2ForCTC.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", [decode_string(x) for x in processor.batch_decode(predicted_ids)])
print("Reference:", test_dataset["sentence"][:2])
評估用法
本模型可在 Common Voice 越南語測試數據上進行評估,示例代碼如下:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
ENCODER = {
"ia ": "iê ",
"ìa ": "iề ",
"ía ": "iế ",
"ỉa ": "iể ",
"ĩa ": "iễ ",
"ịa ": "iệ ",
"ya ": "yê ",
"ỳa ": "yề ",
"ýa ": "yế ",
"ỷa ": "yể ",
"ỹa ": "yễ ",
"ỵa ": "yệ ",
"ua ": "uô ",
"ùa ": "uồ ",
"úa ": "uố ",
"ủa ": "uổ ",
"ũa ": "uỗ ",
"ụa ": "uộ ",
"ưa ": "ươ ",
"ừa ": "ườ ",
"ứa ": "ướ ",
"ửa ": "ưở ",
"ữa ": "ưỡ ",
"ựa ": "ượ ",
"ke": "ce",
"kè": "cè",
"ké": "cé",
"kẻ": "cẻ",
"kẽ": "cẽ",
"kẹ": "cẹ",
"kê": "cê",
"kề": "cề",
"kế": "cế",
"kể": "cể",
"kễ": "cễ",
"kệ": "cệ",
"ki": "ci",
"kì": "cì",
"kí": "cí",
"kỉ": "cỉ",
"kĩ": "cĩ",
"kị": "cị",
"ky": "cy",
"kỳ": "cỳ",
"ký": "cý",
"kỷ": "cỷ",
"kỹ": "cỹ",
"kỵ": "cỵ",
"ghe": "ge",
"ghè": "gè",
"ghé": "gé",
"ghẻ": "gẻ",
"ghẽ": "gẽ",
"ghẹ": "gẹ",
"ghê": "gê",
"ghề": "gề",
"ghế": "gế",
"ghể": "gể",
"ghễ": "gễ",
"ghệ": "gệ",
"ngh": "\x80",
"uyê": "\x96",
"uyề": "\x97",
"uyế": "\x98",
"uyể": "\x99",
"uyễ": "\x9a",
"uyệ": "\x9b",
"ng": "\x81",
"ch": "\x82",
"gh": "\x83",
"nh": "\x84",
"gi": "\x85",
"ph": "\x86",
"kh": "\x87",
"th": "\x88",
"tr": "\x89",
"uy": "\x8a",
"uỳ": "\x8b",
"uý": "\x8c",
"uỷ": "\x8d",
"uỹ": "\x8e",
"uỵ": "\x8f",
"iê": "\x90",
"iề": "\x91",
"iế": "\x92",
"iể": "\x93",
"iễ": "\x94",
"iệ": "\x95",
"uô": "\x9c",
"uồ": "\x9d",
"uố": "\x9e",
"uổ": "\x9f",
"uỗ": "\xa0",
"uộ": "\xa1",
"ươ": "\xa2",
"ườ": "\xa3",
"ướ": "\xa4",
"ưở": "\xa5",
"ưỡ": "\xa6",
"ượ": "\xa7",
}
def decode_string(x):
for k, v in list(reversed(list(ENCODER.items()))):
x = x.replace(v, k)
return x
test_dataset = load_dataset("common_voice", "vi", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
model = Wav2Vec2ForCTC.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
model.to("cuda")
chars_to_ignore_regex = '[\\\+\@\ǀ\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
# decode_string: We replace the encoded letter with the initial letters
batch["pred_strings"] = [decode_string(x) for x in batch["pred_strings"]]
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
測試結果:49.59 %
🔧 訓練信息
訓練過程使用了 Common Voice 的 train
、validation
數據集,以及 FOSD 和 VIVOS 數據集。訓練腳本可在 此處 找到。
📄 許可證
本項目採用 Apache-2.0 許可證。
Voice Activity Detection
MIT
基於pyannote.audio 2.1版本的語音活動檢測模型,用於識別音頻中的語音活動時間段
語音識別
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
這是一個針對葡萄牙語語音識別任務微調的XLSR-53大模型,基於Common Voice 6.1數據集訓練,支持葡萄牙語語音轉文本。
語音識別 其他
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
Whisper是由OpenAI提出的先進自動語音識別(ASR)和語音翻譯模型,在超過500萬小時的標註數據上訓練,具有強大的跨數據集和跨領域泛化能力。
語音識別 支持多種語言
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
Whisper是由OpenAI開發的最先進的自動語音識別(ASR)和語音翻譯模型,經過超過500萬小時標記數據的訓練,在零樣本設置下展現出強大的泛化能力。
語音識別
Transformers 支持多種語言

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53模型微調的俄語語音識別模型,支持16kHz採樣率的語音輸入
語音識別 其他
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53模型微調的中文語音識別模型,支持16kHz採樣率的語音輸入。
語音識別 中文
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53微調的荷蘭語語音識別模型,在Common Voice和CSS10數據集上訓練,支持16kHz音頻輸入。
語音識別 其他
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53模型微調的日語語音識別模型,支持16kHz採樣率的語音輸入
語音識別 日語
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
基於Hugging Face預訓練模型的文本與音頻強制對齊工具,支持多種語言,內存效率高
語音識別
Transformers 支持多種語言

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53微調的阿拉伯語語音識別模型,在Common Voice和阿拉伯語語音語料庫上訓練
語音識別 阿拉伯語
W
jonatasgrosman
2.3M
37
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98