Wav2vec2 Large Xlsr Vietnamese
facebook/wav2vec2-large-xlsr-53モデルをベースにファインチューニングしたベトナム語自動音声認識モデル
ダウンロード数 22
リリース時間 : 3/2/2022
モデル概要
このモデルはベトナム語に最適化された自動音声認識(ASR)モデルで、XLSR Wav2Vec2アーキテクチャを基に、Common Voice、FOSD、VIVOSデータセットを使用してファインチューニングされています。
モデル特徴
複数データセットファインチューニング
Common Voice、FOSD、VIVOSの3つのベトナム語データセットを使用してトレーニングし、モデルの適応性を向上
16kHzサンプリングレート対応
16kHzサンプリングレートの音声入力を最適化処理
言語モデル不要
追加の言語モデルサポートなしで直接使用可能
モデル能力
ベトナム語音声認識
自動音声テキスト変換
使用事例
音声書き起こし
ベトナム語音声文字起こし
ベトナム語音声コンテンツをテキストに変換
Common Voiceベトナム語テストセットでWER49.59%
音声アシスタント
ベトナム語音声コマンド認識
ベトナム語音声アシスタントやスマートホームデバイスの音声コマンド認識に使用
🚀 Wav2Vec2-Large-XLSR-53-ベトナム語
このモデルは、facebook/wav2vec2-large-xlsr-53 を、Common Voice、FOSD、VIVOS のベトナム語データセットを用いてファインチューニングしたものです。このモデルを使用する際には、音声入力が16kHzでサンプリングされていることを確認してください。
🚀 クイックスタート
このセクションでは、モデルの基本的な使い方や評価方法、トレーニングに関する情報を提供します。
✨ 主な機能
- ベトナム語の音声認識に特化したモデルです。
- 既存の大規模モデルをファインチューニングしているため、高精度な音声認識が可能です。
📦 インストール
このドキュメントには具体的なインストール手順が記載されていないため、このセクションをスキップします。
💻 使用例
基本的な使用法
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
ENCODER = {
"ia ": "iê ",
"ìa ": "iề ",
"ía ": "iế ",
"ỉa ": "iể ",
"ĩa ": "iễ ",
"ịa ": "iệ ",
"ya ": "yê ",
"ỳa ": "yề ",
"ýa ": "yế ",
"ỷa ": "yể ",
"ỹa ": "yễ ",
"ỵa ": "yệ ",
"ua ": "uô ",
"ùa ": "uồ ",
"úa ": "uố ",
"ủa ": "uổ ",
"ũa ": "uỗ ",
"ụa ": "uộ ",
"ưa ": "ươ ",
"ừa ": "ườ ",
"ứa ": "ướ ",
"ửa ": "ưở ",
"ữa ": "ưỡ ",
"ựa ": "ượ ",
"ke": "ce",
"kè": "cè",
"ké": "cé",
"kẻ": "cẻ",
"kẽ": "cẽ",
"kẹ": "cẹ",
"kê": "cê",
"kề": "cề",
"kế": "cế",
"kể": "cể",
"kễ": "cễ",
"kệ": "cệ",
"ki": "ci",
"kì": "cì",
"kí": "cí",
"kỉ": "cỉ",
"kĩ": "cĩ",
"kị": "cị",
"ky": "cy",
"kỳ": "cỳ",
"ký": "cý",
"kỷ": "cỷ",
"kỹ": "cỹ",
"kỵ": "cỵ",
"ghe": "ge",
"ghè": "gè",
"ghé": "gé",
"ghẻ": "gẻ",
"ghẽ": "gẽ",
"ghẹ": "gẹ",
"ghê": "gê",
"ghề": "gề",
"ghế": "gế",
"ghể": "gể",
"ghễ": "gễ",
"ghệ": "gệ",
"ngh": "\x80",
"uyê": "\x96",
"uyề": "\x97",
"uyế": "\x98",
"uyể": "\x99",
"uyễ": "\x9a",
"uyệ": "\x9b",
"ng": "\x81",
"ch": "\x82",
"gh": "\x83",
"nh": "\x84",
"gi": "\x85",
"ph": "\x86",
"kh": "\x87",
"th": "\x88",
"tr": "\x89",
"uy": "\x8a",
"uỳ": "\x8b",
"uý": "\x8c",
"uỷ": "\x8d",
"uỹ": "\x8e",
"uỵ": "\x8f",
"iê": "\x90",
"iề": "\x91",
"iế": "\x92",
"iể": "\x93",
"iễ": "\x94",
"iệ": "\x95",
"uô": "\x9c",
"uồ": "\x9d",
"uố": "\x9e",
"uổ": "\x9f",
"uỗ": "\xa0",
"uộ": "\xa1",
"ươ": "\xa2",
"ườ": "\xa3",
"ướ": "\xa4",
"ưở": "\xa5",
"ưỡ": "\xa6",
"ượ": "\xa7",
}
def decode_string(x):
for k, v in list(reversed(list(ENCODER.items()))):
x = x.replace(v, k)
return x
test_dataset = load_dataset("common_voice", "vi", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
model = Wav2Vec2ForCTC.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", [decode_string(x) for x in processor.batch_decode(predicted_ids)])
print("Reference:", test_dataset["sentence"][:2])
高度な使用法
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
ENCODER = {
"ia ": "iê ",
"ìa ": "iề ",
"ía ": "iế ",
"ỉa ": "iể ",
"ĩa ": "iễ ",
"ịa ": "iệ ",
"ya ": "yê ",
"ỳa ": "yề ",
"ýa ": "yế ",
"ỷa ": "yể ",
"ỹa ": "yễ ",
"ỵa ": "yệ ",
"ua ": "uô ",
"ùa ": "uồ ",
"úa ": "uố ",
"ủa ": "uổ ",
"ũa ": "uỗ ",
"ụa ": "uộ ",
"ưa ": "ươ ",
"ừa ": "ườ ",
"ứa ": "ướ ",
"ửa ": "ưở ",
"ữa ": "ưỡ ",
"ựa ": "ượ ",
"ke": "ce",
"kè": "cè",
"ké": "cé",
"kẻ": "cẻ",
"kẽ": "cẽ",
"kẹ": "cẹ",
"kê": "cê",
"kề": "cề",
"kế": "cế",
"kể": "cể",
"kễ": "cễ",
"kệ": "cệ",
"ki": "ci",
"kì": "cì",
"kí": "cí",
"kỉ": "cỉ",
"kĩ": "cĩ",
"kị": "cị",
"ky": "cy",
"kỳ": "cỳ",
"ký": "cý",
"kỷ": "cỷ",
"kỹ": "cỹ",
"kỵ": "cỵ",
"ghe": "ge",
"ghè": "gè",
"ghé": "gé",
"ghẻ": "gẻ",
"ghẽ": "gẽ",
"ghẹ": "gẹ",
"ghê": "gê",
"ghề": "gề",
"ghế": "gế",
"ghể": "gể",
"ghễ": "gễ",
"ghệ": "gệ",
"ngh": "\x80",
"uyê": "\x96",
"uyề": "\x97",
"uyế": "\x98",
"uyể": "\x99",
"uyễ": "\x9a",
"uyệ": "\x9b",
"ng": "\x81",
"ch": "\x82",
"gh": "\x83",
"nh": "\x84",
"gi": "\x85",
"ph": "\x86",
"kh": "\x87",
"th": "\x88",
"tr": "\x89",
"uy": "\x8a",
"uỳ": "\x8b",
"uý": "\x8c",
"uỷ": "\x8d",
"uỹ": "\x8e",
"uỵ": "\x8f",
"iê": "\x90",
"iề": "\x91",
"iế": "\x92",
"iể": "\x93",
"iễ": "\x94",
"iệ": "\x95",
"uô": "\x9c",
"uồ": "\x9d",
"uố": "\x9e",
"uổ": "\x9f",
"uỗ": "\xa0",
"uộ": "\xa1",
"ươ": "\xa2",
"ườ": "\xa3",
"ướ": "\xa4",
"ưở": "\xa5",
"ưỡ": "\xa6",
"ượ": "\xa7",
}
def decode_string(x):
for k, v in list(reversed(list(ENCODER.items()))):
x = x.replace(v, k)
return x
test_dataset = load_dataset("common_voice", "vi", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
model = Wav2Vec2ForCTC.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
model.to("cuda")
chars_to_ignore_regex = '[\\\+\@\ǀ\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
# decode_string: We replace the encoded letter with the initial letters
batch["pred_strings"] = [decode_string(x) for x in batch["pred_strings"]]
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
📚 ドキュメント
評価
このモデルは、Common Voiceのベトナム語テストデータで以下のように評価できます。
# 上記の高度な使用法のコードと同じ
テスト結果: 49.59 %
トレーニング
トレーニングには、Common Voiceの train
、validation
データセット、FOSDデータセット、VIVOSデータセットが使用されました。トレーニングに使用されたスクリプトは こちら で確認できます。
📄 ライセンス
このモデルは、Apache-2.0ライセンスの下で提供されています。
📋 データセットとメトリクス
属性 | 詳情 |
---|---|
データセット | Common Voice、FOSD (https://data.mendeley.com/datasets/k9sxg2twv4/4)、VIVOS (https://ailab.hcmus.edu.vn/vivos) |
メトリクス | WER (Word Error Rate) |
タグ | audio、automatic-speech-recognition、speech、xlsr-fine-tuning-week |
モデル名 | XLSR Wav2Vec2 Vietnamese by Nhut |
タスク | 音声認識 (Speech Recognition) |
評価結果 | Test WER: 49.59 % |
Voice Activity Detection
MIT
pyannote.audio 2.1バージョンに基づく音声活動検出モデルで、音声中の音声活動時間帯を識別するために使用されます
音声認識
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
これはポルトガル語音声認識タスク向けにファインチューニングされたXLSR-53大規模モデルで、Common Voice 6.1データセットでトレーニングされ、ポルトガル語音声からテキストへの変換をサポートします。
音声認識 その他
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
WhisperはOpenAIが提案した先進的な自動音声認識(ASR)および音声翻訳モデルで、500万時間以上の注釈付きデータで訓練されており、強力なデータセット間およびドメイン間の汎化能力を持っています。
音声認識 複数言語対応
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
WhisperはOpenAIが開発した最先端の自動音声認識(ASR)および音声翻訳モデルで、500万時間以上のラベル付きデータでトレーニングされ、ゼロショット設定において強力な汎化能力を発揮します。
音声認識
Transformers 複数言語対応

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
facebook/wav2vec2-large-xlsr-53モデルをファインチューニングしたロシア語音声認識モデル、16kHzサンプリングレートの音声入力をサポート
音声認識 その他
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
facebook/wav2vec2-large-xlsr-53モデルをファインチューニングした中国語音声認識モデルで、16kHzサンプリングレートの音声入力をサポートしています。
音声認識 中国語
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
facebook/wav2vec2-large-xlsr-53をファインチューニングしたオランダ語音声認識モデルで、Common VoiceとCSS10データセットでトレーニングされ、16kHz音声入力に対応しています。
音声認識 その他
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
facebook/wav2vec2-large-xlsr-53モデルをベースにファインチューニングした日本語音声認識モデルで、16kHzサンプリングレートの音声入力をサポート
音声認識 日本語
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
Hugging Faceの事前学習モデルを基にしたテキストと音声の強制アライメントツールで、多言語対応かつメモリ効率に優れています
音声認識
Transformers 複数言語対応

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
facebook/wav2vec2-large-xlsr - 53をベースに微調整されたアラビア語音声認識モデルで、Common Voiceとアラビア語音声コーパスで訓練されました。
音声認識 アラビア語
W
jonatasgrosman
2.3M
37
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98