Wav2vec2 Large Xlsr 53 Arabic
facebook/wav2vec2-large-xlsr - 53をベースに微調整されたアラビア語音声認識モデルで、Common Voiceとアラビア語音声コーパスで訓練されました。
ダウンロード数 2.3M
リリース時間 : 3/2/2022
モデル概要
アラビア語に最適化された自動音声認識(ASR)モデルで、16kHzサンプリングレートの音声入力をテキストに変換できます。
モデル特徴
高性能アラビア語認識
Common Voiceアラビア語テストセットで39.59%のWERと18.18%のCERを達成し、同類のアラビア語ASRモデルより優れています。
複数データセットでの訓練
Common Voice 6.1とアラビア語音声コーパスを組み合わせて訓練することで、モデルの汎化能力を向上させます。
即時使用可能なモデル
追加の言語モデルなしで直接使用でき、デプロイプロセスを簡素化します。
モデル能力
アラビア語音声認識
16kHzオーディオ処理
長い音声の文字起こし
使用事例
音声から文字への変換
音声メモの文字起こし
アラビア語の音声メモを検索可能なテキストに変換します。
精度約80%(CERに基づく推測)
カスタマーサービスの会話記録
アラビア語のカスタマーサービス通話内容を自動記録します。
支援技術
聴覚障害者支援
聴覚障害者にリアルタイム字幕を提供します。
🚀 アラビア語音声認識用にファインチューニングされたXLSR-53大規模モデル
このモデルは、Common Voice 6.1 と Arabic Speech Corpus のトレーニングと検証データセットを使用して、アラビア語に対して facebook/wav2vec2-large-xlsr-53 をファインチューニングしたものです。このモデルを使用する際には、音声入力が16kHzでサンプリングされていることを確認してください。
このモデルのファインチューニングは、OVHcloud から提供されたGPUクレジットのおかげで行われました。
トレーニングに使用されたスクリプトはこちらにあります: https://github.com/jonatasgrosman/wav2vec2-sprint
🚀 クイックスタート
このモデルは、以下のように直接使用することができます(言語モデルを使用せずに)。
💻 使用例
基本的な使用法
HuggingSound ライブラリを使用する場合:
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-arabic")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
高度な使用法
独自の推論スクリプトを書く場合:
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "ar"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("Reference:", test_dataset[i]["sentence"])
print("Prediction:", predicted_sentence)
参照文 | 予測文 |
---|---|
ألديك قلم ؟ | ألديك قلم |
ليست هناك مسافة على هذه الأرض أبعد من يوم أمس. | ليست نالك مسافة على هذه الأرض أبعد من يوم الأمس م |
إنك تكبر المشكلة. | إنك تكبر المشكلة |
يرغب أن يلتقي بك. | يرغب أن يلتقي بك |
إنهم لا يعرفون لماذا حتى. | إنهم لا يعرفون لماذا حتى |
سيسعدني مساعدتك أي وقت تحب. | سيسئدنيمساعدتك أي وقد تحب |
أَحَبُّ نظريّة علمية إليّ هي أن حلقات زحل مكونة بالكامل من الأمتعة المفقودة. | أحب نظرية علمية إلي هي أن حل قتزح المكوينا بالكامل من الأمت عن المفقودة |
سأشتري له قلماً. | سأشتري له قلما |
أين المشكلة ؟ | أين المشكل |
وَلِلَّهِ يَسْجُدُ مَا فِي السَّمَاوَاتِ وَمَا فِي الْأَرْضِ مِنْ دَابَّةٍ وَالْمَلَائِكَةُ وَهُمْ لَا يَسْتَكْبِرُونَ | ولله يسجد ما في السماوات وما في الأرض من دابة والملائكة وهم لا يستكبرون |
🔧 評価
このモデルは、Common Voiceのアラビア語テストデータで以下のように評価することができます。
import torch
import re
import librosa
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "ar"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic"
DEVICE = "cuda"
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "'", "ʻ", "ˆ"]
test_dataset = load_dataset("common_voice", LANG_ID, split="test")
wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
model.to(DEVICE)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
predictions = [x.upper() for x in result["pred_strings"]]
references = [x.upper() for x in result["sentence"]]
print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
テスト結果:
以下の表に、このモデルの単語誤り率 (WER) と文字誤り率 (CER) を示します。私は上記の評価スクリプトを他のモデルにも実行しました (2021年5月14日)。以下の表の結果は、既に報告されている結果と異なる場合があります。これは、使用された他の評価スクリプトの特性によるものです。
モデル | 単語誤り率 (WER) | 文字誤り率 (CER) |
---|---|---|
jonatasgrosman/wav2vec2-large-xlsr-53-arabic | 39.59% | 18.18% |
bakrianoo/sinai-voice-ar-stt | 45.30% | 21.84% |
othrif/wav2vec2-large-xlsr-arabic | 45.93% | 20.51% |
kmfoda/wav2vec2-large-xlsr-arabic | 54.14% | 26.07% |
mohammed/wav2vec2-large-xlsr-arabic | 56.11% | 26.79% |
anas/wav2vec2-large-xlsr-arabic | 62.02% | 27.09% |
elgeish/wav2vec2-large-xlsr-53-arabic | 100.00% | 100.56% |
📚 引用
このモデルを引用する場合は、次のように使用できます。
@misc{grosman2021xlsr53-large-arabic,
title={Fine-tuned {XLSR}-53 large model for speech recognition in {A}rabic},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-arabic}},
year={2021}
}
📄 ライセンス
このモデルは、Apache-2.0ライセンスの下で提供されています。
📋 モデル情報
属性 | 詳細 |
---|---|
モデルタイプ | 音声認識用のファインチューニング済みXLSR-53大規模モデル |
トレーニングデータ | Common Voice 6.1 と Arabic Speech Corpus |
評価指標 | 単語誤り率 (WER)、文字誤り率 (CER) |
タグ | オーディオ、自動音声認識、音声、xlsr-fine-tuning-week |
Voice Activity Detection
MIT
pyannote.audio 2.1バージョンに基づく音声活動検出モデルで、音声中の音声活動時間帯を識別するために使用されます
音声認識
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
これはポルトガル語音声認識タスク向けにファインチューニングされたXLSR-53大規模モデルで、Common Voice 6.1データセットでトレーニングされ、ポルトガル語音声からテキストへの変換をサポートします。
音声認識 その他
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
WhisperはOpenAIが提案した先進的な自動音声認識(ASR)および音声翻訳モデルで、500万時間以上の注釈付きデータで訓練されており、強力なデータセット間およびドメイン間の汎化能力を持っています。
音声認識 複数言語対応
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
WhisperはOpenAIが開発した最先端の自動音声認識(ASR)および音声翻訳モデルで、500万時間以上のラベル付きデータでトレーニングされ、ゼロショット設定において強力な汎化能力を発揮します。
音声認識
Transformers 複数言語対応

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
facebook/wav2vec2-large-xlsr-53モデルをファインチューニングしたロシア語音声認識モデル、16kHzサンプリングレートの音声入力をサポート
音声認識 その他
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
facebook/wav2vec2-large-xlsr-53モデルをファインチューニングした中国語音声認識モデルで、16kHzサンプリングレートの音声入力をサポートしています。
音声認識 中国語
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
facebook/wav2vec2-large-xlsr-53をファインチューニングしたオランダ語音声認識モデルで、Common VoiceとCSS10データセットでトレーニングされ、16kHz音声入力に対応しています。
音声認識 その他
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
facebook/wav2vec2-large-xlsr-53モデルをベースにファインチューニングした日本語音声認識モデルで、16kHzサンプリングレートの音声入力をサポート
音声認識 日本語
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
Hugging Faceの事前学習モデルを基にしたテキストと音声の強制アライメントツールで、多言語対応かつメモリ効率に優れています
音声認識
Transformers 複数言語対応

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
facebook/wav2vec2-large-xlsr - 53をベースに微調整されたアラビア語音声認識モデルで、Common Voiceとアラビア語音声コーパスで訓練されました。
音声認識 アラビア語
W
jonatasgrosman
2.3M
37
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98