🚀 立陶宛語XLSR Wav2Vec2大模型53
本項目基於Common Voice數據集,在立陶宛語上對facebook/wav2vec2-large-xlsr-53模型進行了微調。使用此模型時,請確保語音輸入的採樣率為16kHz。
✨ 主要特性
- 適用領域:適用於音頻、自動語音識別等領域。
- 評估指標:使用詞錯誤率(WER)作為評估指標。
- 訓練數據集:採用Common Voice立陶宛語數據集進行訓練。
屬性 |
詳情 |
模型類型 |
基於XLSR的Wav2Vec2大模型 |
訓練數據 |
Common Voice立陶宛語數據集 |
許可證 |
Apache-2.0 |
模型評估結果
任務名稱 |
數據集 |
評估指標 |
指標值 |
語音識別 |
Common Voice lt |
測試WER |
49.00% |
🚀 快速開始
模型使用
該模型可以直接使用(無需語言模型),示例代碼如下:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "lt", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-lithuanian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-lithuanian")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
模型評估
可以按照以下方式在Common Voice的立陶宛語測試數據上對模型進行評估:
import torch
import torchaudio
import urllib.request
import tarfile
import pandas as pd
from tqdm.auto import tqdm
from datasets import load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/lt.tar.gz"
filestream = urllib.request.urlopen(data_url)
data_file = tarfile.open(fileobj=filestream, mode="r|gz")
data_file.extractall()
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-lithuanian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-lithuanian")
model.to("cuda")
cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/lt/test.tsv", sep='\t')
clips_path = "cv-corpus-6.1-2020-12-11/lt/clips/"
def clean_sentence(sent):
sent = sent.lower()
sent = sent.replace("’", "'")
sent = "".join(ch if ch.isalpha() or ch == "'" else " " for ch in sent)
sent = " ".join(sent.split())
return sent
targets = []
preds = []
for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
row["sentence"] = clean_sentence(row["sentence"])
speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
row["speech"] = resampler(speech_array).squeeze().numpy()
inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
targets.append(row["sentence"])
preds.append(processor.batch_decode(pred_ids)[0])
print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))
測試結果:49.00 %
模型訓練
訓練過程使用了Common Voice的train
和validation
數據集。
⚠️ 重要提示
使用此模型時,請確保語音輸入的採樣率為16kHz。