đ Wav2Vec2-Large-XLSR-53-Lithuanian
This model is fine-tuned from facebook/wav2vec2-large-xlsr-53 on Lithuanian using the Common Voice dataset. It aims to provide high - quality speech recognition for Lithuanian.
đ Quick Start
This model is a fine - tuned version of facebook/wav2vec2-large-xlsr-53 on Lithuanian with the Common Voice dataset. When using this model, ensure that your speech input is sampled at 16kHz.
⨠Features
- Language Adaptation: Fine - tuned specifically for Lithuanian, enhancing speech recognition performance in this language.
- High - Frequency Compatibility: Requires speech input to be sampled at 16kHz for optimal results.
đĻ Installation
No specific installation steps are provided in the original document.
đģ Usage Examples
Basic Usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "lt", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-lithuanian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-lithuanian")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
import torch
import torchaudio
import urllib.request
import tarfile
import pandas as pd
from tqdm.auto import tqdm
from datasets import load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/lt.tar.gz"
filestream = urllib.request.urlopen(data_url)
data_file = tarfile.open(fileobj=filestream, mode="r|gz")
data_file.extractall()
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-lithuanian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-lithuanian")
model.to("cuda")
cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/lt/test.tsv", sep='\t')
clips_path = "cv-corpus-6.1-2020-12-11/lt/clips/"
def clean_sentence(sent):
sent = sent.lower()
sent = sent.replace("â", "'")
sent = "".join(ch if ch.isalpha() or ch == "'" else " " for ch in sent)
sent = " ".join(sent.split())
return sent
targets = []
preds = []
for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
row["sentence"] = clean_sentence(row["sentence"])
speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
row["speech"] = resampler(speech_array).squeeze().numpy()
inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
targets.append(row["sentence"])
preds.append(processor.batch_decode(pred_ids)[0])
print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))
Test Result: 49.00 %
đ Documentation
Model Information
Property |
Details |
Model Type |
Fine - tuned Wav2Vec2 - Large - XLSR - 53 for Lithuanian |
Training Data |
Common Voice train and validation datasets |
Metrics |
Word Error Rate (WER) |
Model Index
- Name: Lithuanian XLSR Wav2Vec2 Large 53 by Anton Lozhkov
- Results:
- Task:
- Name: Speech Recognition
- Type: automatic - speech - recognition
- Dataset:
- Name: Common Voice lt
- Type: common_voice
- Args: lt
- Metrics:
- Name: Test WER
- Type: wer
- Value: 49.00
đ§ Technical Details
The model is fine - tuned from facebook/wav2vec2-large-xlsr-53 on the Lithuanian subset of the Common Voice dataset. During usage, it is crucial to ensure that the speech input is sampled at 16kHz to achieve accurate results.
đ License
This model is licensed under the apache - 2.0
license.