🚀 aradia-ctc-data2vec-ft
該模型是 /l/users/abdulwahab.sahyoun/aradia/aradia-ctc-data2vec-ft 在 ABDUSAHMBZUAI/ARABIC_SPEECH_MASSIVE_300HRS - NA 數據集上的微調版本。它在評估集上取得了以下結果:
📚 詳細文檔
訓練過程
訓練超參數
訓練期間使用了以下超參數:
- 學習率:0.0003
- 訓練批次大小:32
- 評估批次大小:32
- 隨機種子:42
- 梯度累積步數:2
- 總訓練批次大小:64
- 優化器:Adam,其中 betas=(0.9, 0.999),epsilon=1e-08
- 學習率調度器類型:線性
- 學習率調度器熱身步數:500
- 訓練輪數:30.0
- 混合精度訓練:原生自動混合精度(Native AMP)
訓練結果
訓練損失 |
輪數 |
步數 |
驗證損失 |
字錯率(Wer) |
無日誌記錄 |
0.43 |
100 |
3.3600 |
1.0 |
無日誌記錄 |
0.87 |
200 |
3.0887 |
1.0 |
無日誌記錄 |
1.3 |
300 |
3.0779 |
1.0 |
無日誌記錄 |
1.74 |
400 |
3.0551 |
1.0 |
4.8553 |
2.17 |
500 |
3.0526 |
1.0 |
4.8553 |
2.61 |
600 |
3.0560 |
1.0 |
4.8553 |
3.04 |
700 |
3.1251 |
1.0 |
4.8553 |
3.48 |
800 |
3.0870 |
1.0 |
4.8553 |
3.91 |
900 |
3.0822 |
1.0 |
3.1133 |
4.35 |
1000 |
3.0484 |
1.0 |
3.1133 |
4.78 |
1100 |
3.0558 |
1.0 |
3.1133 |
5.22 |
1200 |
3.1019 |
1.0 |
3.1133 |
5.65 |
1300 |
3.0914 |
1.0 |
3.1133 |
6.09 |
1400 |
3.0691 |
1.0 |
3.109 |
6.52 |
1500 |
3.0589 |
1.0 |
3.109 |
6.95 |
1600 |
3.0508 |
1.0 |
3.109 |
7.39 |
1700 |
3.0540 |
1.0 |
3.109 |
7.82 |
1800 |
3.0546 |
1.0 |
3.109 |
8.26 |
1900 |
3.0524 |
1.0 |
3.1106 |
8.69 |
2000 |
3.0569 |
1.0 |
3.1106 |
9.13 |
2100 |
3.0622 |
1.0 |
3.1106 |
9.56 |
2200 |
3.0518 |
1.0 |
3.1106 |
10.0 |
2300 |
3.0749 |
1.0 |
3.1106 |
10.43 |
2400 |
3.0698 |
1.0 |
3.1058 |
10.87 |
2500 |
3.0665 |
1.0 |
3.1058 |
11.3 |
2600 |
3.0555 |
1.0 |
3.1058 |
11.74 |
2700 |
3.0589 |
1.0 |
3.1058 |
12.17 |
2800 |
3.0611 |
1.0 |
3.1058 |
12.61 |
2900 |
3.0561 |
1.0 |
3.1071 |
13.04 |
3000 |
3.0480 |
1.0 |
3.1071 |
13.48 |
3100 |
3.0492 |
1.0 |
3.1071 |
13.91 |
3200 |
3.0574 |
1.0 |
3.1071 |
14.35 |
3300 |
3.0538 |
1.0 |
3.1071 |
14.78 |
3400 |
3.0505 |
1.0 |
3.1061 |
15.22 |
3500 |
3.0600 |
1.0 |
3.1061 |
15.65 |
3600 |
3.0596 |
1.0 |
3.1061 |
16.09 |
3700 |
3.0623 |
1.0 |
3.1061 |
16.52 |
3800 |
3.0800 |
1.0 |
3.1061 |
16.95 |
3900 |
3.0583 |
1.0 |
3.1036 |
17.39 |
4000 |
3.0534 |
1.0 |
3.1036 |
17.82 |
4100 |
3.0563 |
1.0 |
3.1036 |
18.26 |
4200 |
3.0481 |
1.0 |
3.1036 |
18.69 |
4300 |
3.0477 |
1.0 |
3.1036 |
19.13 |
4400 |
3.0505 |
1.0 |
3.1086 |
19.56 |
4500 |
3.0485 |
1.0 |
3.1086 |
20.0 |
4600 |
3.0481 |
1.0 |
3.1086 |
20.43 |
4700 |
3.0615 |
1.0 |
3.1086 |
20.87 |
4800 |
3.0658 |
1.0 |
3.1086 |
21.3 |
4900 |
3.0505 |
1.0 |
3.1028 |
21.74 |
5000 |
3.0492 |
1.0 |
3.1028 |
22.17 |
5100 |
3.0485 |
1.0 |
3.1028 |
22.61 |
5200 |
3.0483 |
1.0 |
3.1028 |
23.04 |
5300 |
3.0479 |
1.0 |
3.1028 |
23.48 |
5400 |
3.0509 |
1.0 |
3.1087 |
23.91 |
5500 |
3.0530 |
1.0 |
3.1087 |
24.35 |
5600 |
3.0486 |
1.0 |
3.1087 |
24.78 |
5700 |
3.0514 |
1.0 |
3.1087 |
25.22 |
5800 |
3.0505 |
1.0 |
3.1087 |
25.65 |
5900 |
3.0508 |
1.0 |
3.1043 |
26.09 |
6000 |
3.0501 |
1.0 |
3.1043 |
26.52 |
6100 |
3.0467 |
1.0 |
3.1043 |
26.95 |
6200 |
3.0466 |
1.0 |
3.1043 |
27.39 |
6300 |
3.0465 |
1.0 |
3.1043 |
27.82 |
6400 |
3.0465 |
1.0 |
3.1175 |
28.26 |
6500 |
3.0466 |
1.0 |
3.1175 |
28.69 |
6600 |
3.0466 |
1.0 |
3.1175 |
29.13 |
6700 |
3.0465 |
1.0 |
3.1175 |
29.56 |
6800 |
3.0465 |
1.0 |
3.1175 |
30.0 |
6900 |
3.0464 |
1.0 |
框架版本
- Transformers 4.18.0.dev0
- Pytorch 1.10.2+cu113
- Datasets 1.18.4
- Tokenizers 0.11.6