Mini InternVL2 1B DA DriveLM
Mini-InternVL2-DA-RSはリモートセンシング画像分野に最適化されたマルチモーダルモデルで、Mini-InternVLアーキテクチャを基に、ドメイン適応フレームワークで微調整され、リモートセンシング画像理解タスクで優れた性能を発揮します。
ダウンロード数 61
リリース時間 : 12/7/2024
モデル概要
このモデルはOpenGVLabチームがリモートセンシング画像分野向けに公開した適応モデルで、統一された適応フレームワークによる微調整を経て、リモートセンシング画像の理解と分析タスクで良好な性能を達成しました。
モデル特徴
リモートセンシング分野最適化
リモートセンシング画像の特性に特化して最適化されており、衛星や航空写真などのリモートセンシング画像をより良く理解・分析できます
マルチモーダル能力
画像とテキストの統合理解と生成をサポートし、画像説明や質問応答など多様なタスクを実現可能
効率的な推論
オリジナルのInternVLモデルと比較し、Mini版は性能を維持しながら大幅にモデルサイズを削減
モデル能力
リモートセンシング画像理解
画像説明生成
視覚的質問応答
マルチターン対話
複数画像分析
使用事例
リモートセンシング画像分析
衛星画像説明
衛星で撮影された地表画像の自動説明と分析
地表の特徴や建物分布などを正確に識別可能
災害評価
災害前後の画像比較による災害影響範囲の分析
被災地域と程度を迅速に評価可能
地理情報システム
土地利用分類
リモートセンシング画像中の土地利用タイプの自動分類
農地、森林、水域などの異なる地類を識別可能
🚀 Mini-InternVL2-DA-RS
Mini-InternVL2-DA-RSは、特定のドメイン(自動運転、医療画像、リモートセンシング)向けに適応されたモデルです。Mini-InternVLをベースに統一的な適応フレームワークで微調整され、特定ドメインのタスクで良好な性能を発揮します。
[📂 GitHub] [🆕 Blog] [📜 Mini-InternVL] [📜 InternVL 1.0] [📜 InternVL 1.5] [📜 InternVL 2.5]
[🗨️ InternVL Chat Demo] [🤗 HF Demo] [🚀 クイックスタート] [📖 中文解读] [📖 ドキュメント]
✨ 主な機能
特定のドメイン(自動運転、医療画像、リモートセンシング)向けの適応モデルを提供します。これらのモデルはMini-InternVLをベースに、統一的な適応フレームワークで微調整されており、特定ドメインのタスクで良好な性能を達成しています。
モデル名 | HFリンク | 備考 |
---|---|---|
Mini-InternVL2-DA-Drivelm | 🤗1B / 🤗2B / 🤗4B | CVPR 2024自動運転チャレンジへの適応 |
Mini-InternVL2-DA-BDD | 🤗1B / 🤗2B / 🤗4B | DriveGPT4で構築されたデータを使用した微調整 |
Mini-InternVL2-DA-RS | 🤗1B / 🤗2B / 🤗4B | リモートセンシングドメインへの適応 |
Mini-InternVL2-DA-Medical | 🤗1B / 🤗2B / 🤗4B | 医療データを使用した微調整 |
評価用のスクリプトはドキュメントにあります。
📦 インストール
⚠️ 重要提示
transformers>=4.37.2
を使用して、モデルが正常に動作するようにしてください。
💻 使用例
基本的な使用法
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
# If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
path = 'OpenGVLab/Mini-InternVL2-1B-DA-Drivelm'
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
# set the max number of tiles in `max_num`
pixel_values = load_image('path/to/image.jpg', max_num=12).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens=1024, do_sample=True)
# pure-text conversation (純文本对话)
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'Can you tell me a story?'
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# single-image single-round conversation (单图单轮对话)
question = '<image>\nPlease describe the image shortly.'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}\nAssistant: {response}')
# single-image multi-round conversation (单图多轮对话)
question = '<image>\nPlease describe the image in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'Please write a poem according to the image.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
pixel_values1 = load_image('path/to/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('path/to/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
question = '<image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
pixel_values1 = load_image('path/to/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('path/to/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list,
history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list,
history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# batch inference, single image per sample (单图批处理)
pixel_values1 = load_image('path/to/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('path/to/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
responses = model.batch_chat(tokenizer, pixel_values,
num_patches_list=num_patches_list,
questions=questions,
generation_config=generation_config)
for question, response in zip(questions, responses):
print(f'User: {question}\nAssistant: {response}')
📚 ドキュメント
学習データセット
-
一般ドメインデータセット: ShareGPT4V, AllSeeingV2, LLaVA-Instruct-ZH, DVQA, ChartQA, AI2D, DocVQA, GeoQA+, SynthDoG-EN
-
自動運転データセット: DriveLM.
📄 ライセンス
このプロジェクトはMITライセンスの下で公開されています。
📖 引用
このプロジェクトがあなたの研究に役立った場合は、以下の文献を引用してください。
@article{gao2024mini,
title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
journal={arXiv preprint arXiv:2410.16261},
year={2024}
}
@article{chen2024expanding,
title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
journal={arXiv preprint arXiv:2412.05271},
year={2024}
}
@article{chen2024far,
title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
journal={arXiv preprint arXiv:2404.16821},
year={2024}
}
@inproceedings{chen2024internvl,
title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={24185--24198},
year={2024}
}
Clip Vit Large Patch14
CLIPはOpenAIによって開発された視覚-言語モデルで、コントラスティブラーニングを通じて画像とテキストを共有の埋め込み空間にマッピングし、ゼロショット画像分類をサポートします
画像生成テキスト
C
openai
44.7M
1,710
Clip Vit Base Patch32
CLIPはOpenAIが開発したマルチモーダルモデルで、画像とテキストの関係を理解し、ゼロショット画像分類タスクをサポートします。
画像生成テキスト
C
openai
14.0M
666
Siglip So400m Patch14 384
Apache-2.0
SigLIPはWebLiデータセットで事前学習された視覚言語モデルで、改良されたシグモイド損失関数を採用し、画像-テキストマッチングタスクを最適化しています。
画像生成テキスト
Transformers

S
google
6.1M
526
Clip Vit Base Patch16
CLIPはOpenAIが開発したマルチモーダルモデルで、コントラスティブラーニングにより画像とテキストを共有の埋め込み空間にマッピングし、ゼロショット画像分類能力を実現します。
画像生成テキスト
C
openai
4.6M
119
Blip Image Captioning Base
Bsd-3-clause
BLIPは先進的な視覚-言語事前学習モデルで、画像キャプション生成タスクに優れており、条件付きおよび無条件のテキスト生成をサポートします。
画像生成テキスト
Transformers

B
Salesforce
2.8M
688
Blip Image Captioning Large
Bsd-3-clause
BLIPは統一された視覚-言語事前学習フレームワークで、画像キャプション生成タスクに優れており、条件付きおよび無条件の画像キャプション生成をサポートします。
画像生成テキスト
Transformers

B
Salesforce
2.5M
1,312
Openvla 7b
MIT
OpenVLA 7BはOpen X-Embodimentデータセットでトレーニングされたオープンソースの視覚-言語-動作モデルで、言語命令とカメラ画像に基づいてロボットの動作を生成できます。
画像生成テキスト
Transformers 英語

O
openvla
1.7M
108
Llava V1.5 7b
LLaVAはオープンソースのマルチモーダルチャットボットで、LLaMA/Vicunaをファインチューニングし、画像とテキストのインタラクションをサポートします。
画像生成テキスト
Transformers

L
liuhaotian
1.4M
448
Vit Gpt2 Image Captioning
Apache-2.0
これはViTとGPT2アーキテクチャに基づく画像記述生成モデルで、入力画像に対して自然言語の記述を生成することができます。
画像生成テキスト
Transformers

V
nlpconnect
939.88k
887
Blip2 Opt 2.7b
MIT
BLIP-2は画像エンコーダーと大規模言語モデルを組み合わせた視覚言語モデルで、画像からテキストを生成するタスクに使用されます。
画像生成テキスト
Transformers 英語

B
Salesforce
867.78k
359
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98