Case Analysis InLegalBERT
InLegalBERTをファインチューニングした法律ケース分析モデルで、法律文書処理タスクに特化
ダウンロード数 18
リリース時間 : 5/10/2024
モデル概要
このモデルはInLegalBERTを法律分野のデータセットでファインチューニングしたバージョンで、主に法律文書分類とケース分析タスクに使用されます。評価では高い精度と再現率を示しています。
モデル特徴
高精度
評価セットで82.18%の精度と82.18%の再現率を達成
法律分野最適化
InLegalBERTを基に法律文書専用にファインチューニング
多指標評価
マクロ指標や加重指標を含む包括的な評価指標を提供
モデル能力
法律文書分類
ケース分析
法律文書処理
使用事例
法律分析
事件分類
法律事件を分類・カテゴライズ
精度82.18%
法律文書分析
法律文書の内容を分析しキー情報を抽出
マクロF1スコア66.9%
🚀 case-analysis-InLegalBERT
このモデルは、未知のデータセットでlaw-ai/InLegalBERTをファインチューニングしたバージョンです。評価セットでは以下の結果を達成しています。
📊 メトリクス
- 損失 (Loss): 1.0434
- 正解率 (Accuracy): 0.8218
- 適合率 (Precision): 0.8145
- 再現率 (Recall): 0.8218
- マクロ適合率 (Precision Macro): 0.6907
- マクロ再現率 (Recall Macro): 0.6533
- マクロ偽陽性率 (Macro Fpr): 0.0897
- 加重偽陽性率 (Weighted Fpr): 0.0674
- 加重特異度 (Weighted Specificity): 0.8528
- マクロ特異度 (Macro Specificity): 0.9187
- 加重感度 (Weighted Sensitivity): 0.8218
- マクロ感度 (Macro Sensitivity): 0.6533
- マイクロF1スコア (F1 Micro): 0.8218
- マクロF1スコア (F1 Macro): 0.6690
- 加重F1スコア (F1 Weighted): 0.8159
- 実行時間 (Runtime): 198.6459
- 1秒あたりのサンプル数 (Samples per second): 2.2600
- 1秒あたりのステップ数 (Steps per second): 0.2870
📚 モデルの説明
詳細情報は未提供です。
🎯 想定用途と制限
詳細情報は未提供です。
📈 学習と評価データ
詳細情報は未提供です。
🔧 学習手順
学習ハイパーパラメータ
学習中に使用されたハイパーパラメータは以下の通りです。
パラメータ | 詳細 |
---|---|
学習率 (learning_rate) | 5e-05 |
学習バッチサイズ (train_batch_size) | 8 |
評価バッチサイズ (eval_batch_size) | 8 |
乱数シード (seed) | 42 |
オプティマイザ (optimizer) | Adam (betas=(0.9,0.999), epsilon=1e-08) |
学習率スケジューラの種類 (lr_scheduler_type) | 線形 (linear) |
エポック数 (num_epochs) | 30 |
混合精度学習 (mixed_precision_training) | Native AMP |
学習結果
学習損失 | エポック | ステップ | 検証損失 | 正解率 | 適合率 | 再現率 | マクロ適合率 | マクロ再現率 | マクロ偽陽性率 | 加重偽陽性率 | 加重特異度 | マクロ特異度 | 加重感度 | マクロ感度 | マイクロF1スコア | マクロF1スコア | 加重F1スコア |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 224 | 0.6546 | 0.8018 | 0.7632 | 0.8018 | 0.5777 | 0.6106 | 0.0978 | 0.0761 | 0.8432 | 0.9112 | 0.8018 | 0.6106 | 0.8018 | 0.5936 | 0.7820 |
No log | 2.0 | 448 | 0.6831 | 0.8129 | 0.7732 | 0.8129 | 0.5845 | 0.6154 | 0.0923 | 0.0712 | 0.8554 | 0.9171 | 0.8129 | 0.6154 | 0.8129 | 0.5996 | 0.7926 |
0.607 | 3.0 | 672 | 0.7626 | 0.8263 | 0.8060 | 0.8263 | 0.6773 | 0.6341 | 0.0885 | 0.0655 | 0.8464 | 0.9182 | 0.8263 | 0.6341 | 0.8263 | 0.6362 | 0.8105 |
0.607 | 4.0 | 896 | 0.7839 | 0.8085 | 0.7991 | 0.8085 | 0.6391 | 0.6306 | 0.0896 | 0.0732 | 0.8754 | 0.9210 | 0.8085 | 0.6306 | 0.8085 | 0.6314 | 0.8017 |
0.316 | 5.0 | 1120 | 0.9381 | 0.8263 | 0.8127 | 0.8263 | 0.6688 | 0.6573 | 0.0822 | 0.0655 | 0.8780 | 0.9261 | 0.8263 | 0.6573 | 0.8263 | 0.6514 | 0.8161 |
0.316 | 6.0 | 1344 | 1.0434 | 0.8218 | 0.8145 | 0.8218 | 0.6907 | 0.6533 | 0.0897 | 0.0674 | 0.8528 | 0.9187 | 0.8218 | 0.6533 | 0.8218 | 0.6690 | 0.8159 |
0.1513 | 7.0 | 1568 | 1.2182 | 0.8018 | 0.8066 | 0.8018 | 0.6382 | 0.6399 | 0.0916 | 0.0761 | 0.8802 | 0.9205 | 0.8018 | 0.6399 | 0.8018 | 0.6375 | 0.8030 |
0.1513 | 8.0 | 1792 | 1.3193 | 0.8285 | 0.8070 | 0.8285 | 0.6566 | 0.6280 | 0.0882 | 0.0645 | 0.8521 | 0.9202 | 0.8285 | 0.6280 | 0.8285 | 0.6376 | 0.8152 |
0.0491 | 9.0 | 2016 | 1.3169 | 0.8330 | 0.8180 | 0.8330 | 0.6950 | 0.6555 | 0.0828 | 0.0627 | 0.8653 | 0.9246 | 0.8330 | 0.6555 | 0.8330 | 0.6687 | 0.8235 |
0.0491 | 10.0 | 2240 | 1.4460 | 0.8307 | 0.8109 | 0.8307 | 0.6584 | 0.6291 | 0.0868 | 0.0636 | 0.8533 | 0.9210 | 0.8307 | 0.6291 | 0.8307 | 0.6398 | 0.8184 |
0.0491 | 11.0 | 2464 | 1.4100 | 0.8419 | 0.8166 | 0.8419 | 0.6718 | 0.6399 | 0.0806 | 0.0589 | 0.8642 | 0.9265 | 0.8419 | 0.6399 | 0.8419 | 0.6464 | 0.8263 |
0.0148 | 12.0 | 2688 | 1.5364 | 0.8218 | 0.8105 | 0.8218 | 0.6661 | 0.6340 | 0.0903 | 0.0674 | 0.8505 | 0.9181 | 0.8218 | 0.6340 | 0.8218 | 0.6469 | 0.8137 |
0.0148 | 13.0 | 2912 | 1.5380 | 0.8307 | 0.8118 | 0.8307 | 0.6596 | 0.6304 | 0.0870 | 0.0636 | 0.8512 | 0.9205 | 0.8307 | 0.6304 | 0.8307 | 0.6409 | 0.8185 |
0.0031 | 14.0 | 3136 | 1.6139 | 0.8218 | 0.8108 | 0.8218 | 0.6451 | 0.6353 | 0.0860 | 0.0674 | 0.8685 | 0.9226 | 0.8218 | 0.6353 | 0.8218 | 0.6396 | 0.8159 |
0.0031 | 15.0 | 3360 | 1.6356 | 0.8263 | 0.8117 | 0.8263 | 0.6626 | 0.6477 | 0.0842 | 0.0655 | 0.8700 | 0.9241 | 0.8263 | 0.6477 | 0.8263 | 0.6529 | 0.8183 |
0.0043 | 16.0 | 3584 | 1.6745 | 0.8241 | 0.7994 | 0.8241 | 0.6244 | 0.6229 | 0.0884 | 0.0664 | 0.8543 | 0.9196 | 0.8241 | 0.6229 | 0.8241 | 0.6231 | 0.8108 |
0.0043 | 17.0 | 3808 | 1.7867 | 0.8085 | 0.7946 | 0.8085 | 0.6221 | 0.6336 | 0.0906 | 0.0732 | 0.8678 | 0.9191 | 0.8085 | 0.6336 | 0.8085 | 0.6229 | 0.7996 |
0.0008 | 18.0 | 4032 | 1.7511 | 0.8151 | 0.7971 | 0.8151 | 0.6110 | 0.6216 | 0.0901 | 0.0703 | 0.8644 | 0.9199 | 0.8151 | 0.6216 | 0.8151 | 0.6145 | 0.8046 |
0.0008 | 19.0 | 4256 | 1.5909 | 0.8441 | 0.8079 | 0.8441 | 0.6260 | 0.6374 | 0.0792 | 0.0580 | 0.8670 | 0.9278 | 0.8441 | 0.6374 | 0.8441 | 0.6311 | 0.8249 |
0.0008 | 20.0 | 4480 | 1.5721 | 0.8463 | 0.8212 | 0.8463 | 0.6727 | 0.6546 | 0.0761 | 0.0571 | 0.8753 | 0.9304 | 0.8463 | 0.6546 | 0.8463 | 0.6547 | 0.8316 |
0.0039 | 21.0 | 4704 | 1.5819 | 0.8396 | 0.8054 | 0.8396 | 0.6337 | 0.6200 | 0.0843 | 0.0599 | 0.8527 | 0.9231 | 0.8396 | 0.6200 | 0.8396 | 0.6245 | 0.8199 |
0.0039 | 22.0 | 4928 | 1.5906 | 0.8486 | 0.8236 | 0.8486 | 0.6814 | 0.6512 | 0.0770 | 0.0562 | 0.8680 | 0.9291 | 0.8486 | 0.6512 | 0.8486 | 0.6570 | 0.8333 |
0.0005 | 23.0 | 5152 | 1.7133 | 0.8263 | 0.8047 | 0.8263 | 0.6403 | 0.6431 | 0.0831 | 0.0655 | 0.8745 | 0.9252 | 0.8263 | 0.6431 | 0.8263 | 0.6367 | 0.8143 |
0.0005 | 24.0 | 5376 | 1.7813 | 0.8241 | 0.8022 | 0.8241 | 0.6515 | 0.6290 | 0.0894 | 0.0664 | 0.8490 | 0.9183 | 0.8241 | 0.6290 | 0.8241 | 0.6348 | 0.8108 |
0.0033 | 25.0 | 5600 | 1.7983 | 0.8218 | 0.8001 | 0.8218 | 0.6485 | 0.6281 | 0.0902 | 0.0674 | 0.8486 | 0.9176 | 0.8218 | 0.6281 | 0.8218 | 0.6328 | 0.8088 |
0.0033 | 26.0 | 5824 | 1.8070 | 0.8218 | 0.8001 | 0.8218 | 0.6485 | 0.6281 | 0.0902 | 0.0674 | 0.8486 | 0.9176 | 0.8218 | 0.6281 | 0.8218 | 0.6328 | 0.8088 |
0.0 | 27.0 | 6048 | 1.8198 | 0.8218 | 0.8024 | 0.8218 | 0.6439 | 0.6295 | 0.0890 | 0.0674 | 0.8544 | 0.9191 | 0.8218 | 0.6295 | 0.8218 | 0.6335 | 0.8106 |
0.0 | 28.0 | 6272 | 1.8243 | 0.8218 | 0.8024 | 0.8218 | 0.6439 | 0.6295 | 0.0890 | 0.0674 | 0.8544 | 0.9191 | 0.8218 | 0.6295 | 0.8218 | 0.6335 | 0.8106 |
0.0 | 29.0 | 6496 | 1.8277 | 0.8218 | 0.8024 | 0.8218 | 0.6439 | 0.6295 | 0.0890 | 0.0674 | 0.8544 | 0.9191 | 0.8218 | 0.6295 | 0.8218 | 0.6335 | 0.8106 |
0.0003 | 30.0 | 6720 | 1.8292 | 0.8218 | 0.8024 | 0.8218 | 0.6439 | 0.6295 | 0.0890 | 0.0674 | 0.8544 | 0.9191 | 0.8218 | 0.6295 | 0.8218 | 0.6335 | 0.8106 |
フレームワークのバージョン
- Transformers: 4.39.3
- Pytorch: 2.2.1+cu121
- Datasets: 2.19.1
- Tokenizers: 0.15.2
📄 ライセンス
このモデルはMITライセンスの下で提供されています。
Distilbert Base Uncased Finetuned Sst 2 English
Apache-2.0
DistilBERT - base - uncasedをベースに、SST - 2感情分析データセットで微調整されたテキスト分類モデル。正解率91.3%
テキスト分類 英語
D
distilbert
5.2M
746
Xlm Roberta Base Language Detection
MIT
XLM-RoBERTaベースの多言語検出モデル、20言語のテキスト分類をサポート
テキスト分類
Transformers 複数言語対応

X
papluca
2.7M
333
Roberta Hate Speech Dynabench R4 Target
このモデルは動的データセット生成を通じてオンライン憎悪検出を改善し、検出効果を高めるために最悪ケースから学習することに焦点を当てています。
テキスト分類
Transformers 英語

R
facebook
2.0M
80
Bert Base Multilingual Uncased Sentiment
MIT
bert-base-multilingual-uncasedを微調整した多言語感情分析モデルで、6言語の商品レビューの感情分析に対応しています。
テキスト分類 複数言語対応
B
nlptown
1.8M
371
Emotion English Distilroberta Base
DistilRoBERTa-baseをファインチューニングした英語テキストの感情分類モデルで、エクマンの6基本感情と中立カテゴリを予測可能。
テキスト分類
Transformers 英語

E
j-hartmann
1.1M
402
Robertuito Sentiment Analysis
RoBERTuitoベースのスペイン語ツイート感情分析モデル、POS(ポジティブ)/NEG(ネガティブ)/NEU(ニュートラル)の3分類に対応
テキスト分類 スペイン語
R
pysentimiento
1.0M
88
Finbert Tone
FinBERTは金融通信テキストを元に事前学習されたBERTモデルで、金融自然言語処理分野に特化しています。finbert-toneはその微調整バージョンで、金融感情分析タスクに使用されます。
テキスト分類
Transformers 英語

F
yiyanghkust
998.46k
178
Roberta Base Go Emotions
MIT
RoBERTa-baseに基づく多ラベル感情分類モデルで、go_emotionsデータセットで訓練され、28種類の感情ラベル識別をサポートします。
テキスト分類
Transformers 英語

R
SamLowe
848.12k
565
Xlm Emo T
XLM-EMOはXLM-Tモデルをファインチューニングした多言語感情分析モデルで、19言語をサポートし、特にソーシャルメディアテキストの感情予測に特化しています。
テキスト分類
Transformers その他

X
MilaNLProc
692.30k
7
Deberta V3 Base Mnli Fever Anli
MIT
MultiNLI、Fever-NLI、ANLIのデータセットを用いて訓練されたDeBERTa-v3モデルで、ゼロショット分類と自然言語推論タスクに優れています。
テキスト分類
Transformers 英語

D
MoritzLaurer
613.93k
204
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98