🚀 pritamdeka/S-PubMedBert-MS-MARCO
このモデルはsentence-transformersを用いたモデルです。文章や段落を768次元の密ベクトル空間にマッピングし、クラスタリングや意味検索などのタスクに使用できます。
これはmicrosoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltextモデルを、sentence-transformersフレームワークを使ってMS-MARCOデータセットで微調整したものです。医療/健康関連のテキストドメインにおける情報検索タスクに利用できます。
🚀 クイックスタート
✨ 主な機能
- 文章や段落を768次元の密ベクトル空間にマッピングする。
- クラスタリングや意味検索などのタスクに使用できる。
- 医療/健康関連のテキストドメインにおける情報検索タスクに利用可能。
📦 インストール
sentence-transformersをインストールすると、このモデルを簡単に使用できます。
pip install -U sentence-transformers
💻 使用例
基本的な使用法 (Sentence-Transformers)
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('pritamdeka/S-PubMedBert-MS-MARCO')
embeddings = model.encode(sentences)
print(embeddings)
高度な使用法 (HuggingFace Transformers)
sentence-transformersを使用せずにモデルを使用するには、まず入力をTransformerモデルに通し、その後コンテキスト化された単語埋め込みに適切なプーリング操作を適用する必要があります。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('pritamdeka/S-PubMedBert-MS-MARCO')
model = AutoModel.from_pretrained('pritamdeka/S-PubMedBert-MS-MARCO')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
🔧 技術詳細
トレーニング
このモデルは以下のパラメータでトレーニングされました。
DataLoader:
torch.utils.data.dataloader.DataLoader
(長さ: 31434) で、以下のパラメータが使用されました。
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
beir.losses.margin_mse_loss.MarginMSELoss
fit()
メソッドのパラメータ:
{
"callback": null,
"epochs": 2,
"evaluation_steps": 10000,
"evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"correct_bias": false,
"eps": 1e-06,
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 1000,
"weight_decay": 0.01
}
モデルアーキテクチャ
SentenceTransformer(
(0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
📄 ライセンス
このモデルは cc-by-nc-2.0 ライセンスの下で提供されています。
📚 ドキュメント
引用と著者
@article{deka2022improved,
title={Improved Methods To Aid Unsupervised Evidence-Based Fact Checking For Online Health News},
author={Deka, Pritam and Jurek-Loughrey, Anna and Deepak, P},
journal={Journal of Data Intelligence},
volume={3},
number={4},
pages={474--504},
year={2022}
}