🚀 pritamdeka/S-PubMedBert-MS-MARCO
这是一个基于sentence-transformers的模型,可将句子和段落映射到768维的密集向量空间,用于聚类或语义搜索等任务。该模型在医疗/健康文本领域的信息检索任务中表现出色。
🚀 快速开始
这是一个sentence-transformers模型,它能将句子和段落映射到768维的密集向量空间,可用于聚类或语义搜索等任务。
该模型基于microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext,并使用sentence-transformers框架在MS - MARCO数据集上进行了微调,可用于医疗/健康文本领域的信息检索任务。
📦 安装指南
如果你已经安装了sentence-transformers,使用该模型会非常简单:
pip install -U sentence-transformers
💻 使用示例
基础用法
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('pritamdeka/S-PubMedBert-MS-MARCO')
embeddings = model.encode(sentences)
print(embeddings)
高级用法
如果没有安装sentence-transformers,你可以这样使用该模型:首先,将输入数据传入transformer模型,然后对上下文词嵌入应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('pritamdeka/S-PubMedBert-MS-MARCO')
model = AutoModel.from_pretrained('pritamdeka/S-PubMedBert-MS-MARCO')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
🔧 技术细节
训练参数
该模型使用以下参数进行训练:
数据加载器:
torch.utils.data.dataloader.DataLoader
,长度为31434,参数如下:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
损失函数:
beir.losses.margin_mse_loss.MarginMSELoss
fit()
方法的参数:
{
"callback": null,
"epochs": 2,
"evaluation_steps": 10000,
"evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"correct_bias": false,
"eps": 1e-06,
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 1000,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
📄 许可证
本模型使用的许可证为cc - by - nc - 2.0。
📚 引用与作者
@article{deka2022improved,
title={Improved Methods To Aid Unsupervised Evidence-Based Fact Checking For Online Health News},
author={Deka, Pritam and Jurek-Loughrey, Anna and Deepak, P},
journal={Journal of Data Intelligence},
volume={3},
number={4},
pages={474--504},
year={2022}
}