Dmeta Embedding Zh Small
Model Overview
Model Features
Model Capabilities
Use Cases
🚀 Dmeta-embedding-zh-small
Dmeta-embedding-zh-small is a model with performance metrics on various tasks in the MTEB benchmark, including semantic text similarity, classification, clustering, reranking, retrieval, and pair classification.
📚 Documentation
Model Information
Property | Details |
---|---|
Model Name | Dmeta-embedding-zh-small |
Tags | mteb |
Task Performance Metrics
1. STS (Semantic Textual Similarity)
-
C-MTEB/AFQMC (Validation Split)
Metric Value cos_sim_pearson 55.38441014851534 cos_sim_spearman 59.54284362578262 euclidean_pearson 58.18592108890414 euclidean_spearman 59.54284362133902 manhattan_pearson 58.142197046175916 manhattan_spearman 59.47943468645265 -
C-MTEB/ATEC (Test Split)
Metric Value cos_sim_pearson 55.96911621560259 cos_sim_spearman 58.6334496101353 euclidean_pearson 62.78426382809823 euclidean_spearman 58.63344961011331 manhattan_pearson 62.80625401678188 manhattan_spearman 58.618722128260394 -
C-MTEB/BQ (Test Split)
Metric Value cos_sim_pearson 68.56815521242152 cos_sim_spearman 70.30776353631751 euclidean_pearson 69.10087719019191 euclidean_spearman 70.30775660748148 manhattan_pearson 69.0672710967445 manhattan_spearman 70.31940638148254 -
C-MTEB/LCQMC (Test Split)
Metric Value cos_sim_pearson 73.03085269274996 cos_sim_spearman 78.72837937949888 euclidean_pearson 78.34911745798928 euclidean_spearman 78.72838602779268 manhattan_pearson 78.31833697617105 manhattan_spearman 78.69603741566397 -
mteb/sts22-crosslingual-sts (zh, Test Split)
Metric Value cos_sim_pearson 66.47464607633356 cos_sim_spearman 66.76311382148693 euclidean_pearson 67.25180409604143 euclidean_spearman 66.76311382148693 manhattan_pearson 67.6928257682864 manhattan_spearman 67.08172581019826 -
C-MTEB/PAWSX (Test Split)
Metric Value cos_sim_pearson 38.5692290188029 cos_sim_spearman 42.965264868554335 euclidean_pearson 43.002526263615735 euclidean_spearman 42.97561576045246 manhattan_pearson 43.050089639788936 manhattan_spearman 43.038497558804934 -
C-MTEB/QBQTC (Test Split)
Metric Value cos_sim_pearson 38.99284895602663 cos_sim_spearman 41.02655813481606 euclidean_pearson 38.934953519378354 euclidean_spearman 41.02680077136343 manhattan_pearson 39.224809609807785 manhattan_spearman 41.13950779185706 -
C-MTEB/STSB (Test Split)
Metric Value cos_sim_pearson [To be filled if available] cos_sim_spearman [To be filled if available] euclidean_pearson [To be filled if available] euclidean_spearman [To be filled if available] manhattan_pearson [To be filled if available] manhattan_spearman [To be filled if available]
2. Classification
-
mteb/amazon_reviews_multi (zh, Test Split)
Metric Value accuracy 44.88 f1 42.739249460584375 -
C-MTEB/IFlyTek-classification (Validation Split)
Metric Value accuracy 49.111196614082345 f1 37.07930546974089 -
C-MTEB/JDReview-classification (Test Split)
Metric Value accuracy 85.57223264540339 ap 53.30690968994808 f1 80.20587062271773 -
mteb/amazon_massive_intent (zh-CN, Test Split)
Metric Value accuracy 70.78345662407531 f1 68.35683436974351 -
mteb/amazon_massive_scenario (zh-CN, Test Split)
Metric Value accuracy 73.16408876933423 f1 73.31484873459382 -
C-MTEB/MultilingualSentiment-classification (Validation Split)
Metric Value accuracy 74.38999999999999 f1 74.07161306140839 -
C-MTEB/OnlineShopping-classification (Test Split)
Metric Value accuracy 93.12000000000002 ap 91.0749103088623 f1 93.10837266607813
3. Clustering
-
C-MTEB/CLSClusteringP2P (Test Split)
Metric Value v_measure 40.7861976704356 -
C-MTEB/CLSClusteringS2S (Test Split)
Metric Value v_measure 38.43028280281822
4. Reranking
-
C-MTEB/CMedQAv1-reranking (Test Split)
Metric Value map 86.78386695617407 mrr 88.79857142857142 -
C-MTEB/CMedQAv2-reranking (Test Split)
Metric Value map 87.38582377194436 mrr 89.17158730158731 -
C-MTEB/Mmarco-reranking (Dev Split)
Metric Value map 27.391692468538416 mrr 26.44682539682539
5. Retrieval
-
C-MTEB/CmedqaRetrieval (Dev Split)
Metric Value map_at_1 23.746000000000002 map_at_10 35.952 map_at_100 37.946999999999996 map_at_1000 38.059 map_at_3 31.680999999999997 map_at_5 34.046 mrr_at_1 36.409000000000006 mrr_at_10 44.801 mrr_at_100 45.842 mrr_at_1000 45.885999999999996 mrr_at_3 42.081 mrr_at_5 43.613 ndcg_at_1 36.409000000000006 ndcg_at_10 42.687000000000005 ndcg_at_100 50.352 ndcg_at_1000 52.275000000000006 ndcg_at_3 37.113 ndcg_at_5 39.434000000000005 precision_at_1 36.409000000000006 precision_at_10 9.712 precision_at_100 1.584 precision_at_1000 0.182 precision_at_3 21.096999999999998 precision_at_5 15.498999999999999 recall_at_1 23.746000000000002 recall_at_10 53.596 recall_at_100 85.232 recall_at_1000 98.092 recall_at_3 37.226 recall_at_5 44.187 -
C-MTEB/CovidRetrieval (Dev Split)
Metric Value map_at_1 61.38 map_at_10 71.23 map_at_100 71.61800000000001 map_at_1000 71.63000000000001 map_at_3 69.31 map_at_5 70.403 mrr_at_1 61.538000000000004 mrr_at_10 71.28999999999999 mrr_at_100 71.666 mrr_at_1000 71.678 mrr_at_3 69.44200000000001 mrr_at_5 70.506 ndcg_at_1 61.538000000000004 ndcg_at_10 75.626 ndcg_at_100 77.449 ndcg_at_1000 77.73400000000001 ndcg_at_3 71.75200000000001 ndcg_at_5 73.695 precision_at_1 61.538000000000004 precision_at_10 9.009 precision_at_100 0.9860000000000001 precision_at_1000 0.101 precision_at_3 26.379 precision_at_5 16.797 recall_at_1 61.38 recall_at_10 89.199 recall_at_100 97.576 recall_at_1000 99.789 recall_at_3 78.635 recall_at_5 83.325 -
C-MTEB/DuRetrieval (Dev Split)
Metric Value map_at_1 23.067 map_at_10 70.658 map_at_100 73.85300000000001 map_at_1000 73.925 map_at_3 48.391 map_at_5 61.172000000000004 mrr_at_1 83.1 mrr_at_10 88.214 mrr_at_100 88.298 mrr_at_1000 88.304 mrr_at_3 87.717 mrr_at_5 88.03699999999999 ndcg_at_1 83.1 ndcg_at_10 79.89 ndcg_at_100 83.829 ndcg_at_1000 84.577 ndcg_at_3 78.337 ndcg_at_5 77.224 precision_at_1 83.1 precision_at_10 38.934999999999995 precision_at_100 4.6690000000000005 precision_at_1000 0.484 precision_at_3 70.48299999999999 precision_at_5 59.68 recall_at_1 23.067 recall_at_10 81.702 recall_at_100 94.214 recall_at_1000 98.241 recall_at_3 51.538 recall_at_5 67.39 -
C-MTEB/EcomRetrieval (Dev Split)
Metric Value map_at_1 49.8 map_at_10 59.46399999999999 map_at_100 60.063 map_at_1000 60.08 map_at_3 56.833 map_at_5 58.438 mrr_at_1 49.8 mrr_at_10 59.46399999999999 mrr_at_100 60.063 mrr_at_1000 60.08 mrr_at_3 56.833 mrr_at_5 58.438 ndcg_at_1 49.8 ndcg_at_10 64.48 ndcg_at_100 67.314 ndcg_at_1000 67.745 ndcg_at_3 59.06400000000001 ndcg_at_5 61.973 precision_at_1 49.8 precision_at_10 8.04 precision_at_100 0.935 precision_at_1000 0.097 precision_at_3 21.833 precision_at_5 14.52 recall_at_1 49.8 recall_at_10 80.4 recall_at_100 93.5 recall_at_1000 96.8 recall_at_3 65.5 recall_at_5 72.6 -
C-MTEB/MMarcoRetrieval (Dev Split)
Metric Value map_at_1 57.206999999999994 map_at_10 66.622 map_at_100 67.12700000000001 map_at_1000 67.145 map_at_3 64.587 map_at_5 65.827 mrr_at_1 59.312 mrr_at_10 67.387 mrr_at_100 67.836 mrr_at_1000 67.851 mrr_at_3 65.556 mrr_at_5 66.66 ndcg_at_1 59.312 ndcg_at_10 70.748 ndcg_at_100 73.076 ndcg_at_1000 73.559 ndcg_at_3 66.81200000000001 ndcg_at_5 68.92399999999999 precision_at_1 59.312 precision_at_10 8.798 precision_at_100 0.996 precision_at_1000 0.104 precision_at_3 25.487 precision_at_5 16.401 recall_at_1 57.206999999999994 recall_at_10 82.767 recall_at_100 93.449 recall_at_1000 97.262 recall_at_3 72.271 recall_at_5 77.291 -
C-MTEB/MedicalRetrieval (Dev Split)
Metric Value map_at_1 51.4 map_at_10 57.091 map_at_100 57.652 map_at_1000 57.703 map_at_3 55.733 map_at_5 56.363 mrr_at_1 51.7 mrr_at_10 57.243 mrr_at_100 57.80499999999999 mrr_at_1000 57.855999999999995 mrr_at_3 55.883 mrr_at_5 56.513000000000005 ndcg_at_1 51.4 ndcg_at_10 59.948 ndcg_at_100 63.064 ndcg_at_1000 64.523 ndcg_at_3 57.089999999999996 ndcg_at_5 58.214 precision_at_1 51.4 precision_at_10 6.9 precision_at_100 0.845 precision_at_1000 0.096 precision_at_3 20.333000000000002 precision_at_5 12.740000000000002 recall_at_1 51.4 recall_at_10 69.0 recall_at_100 84.5 recall_at_1000 96.2 recall_at_3 61.0 recall_at_5 63.7
6. Pair Classification
-
C-MTEB/CMNLI (Validation Split)
Metric Value cos_sim_accuracy 82.66987372218881 cos_sim_ap 90.28715189799232 cos_sim_f1 84.108318049412 cos_sim_precision 78.0849358974359 cos_sim_recall 91.13864858545709 dot_accuracy 82.66987372218881 dot_ap 90.29346021403634 dot_f1 84.108318049412 dot_precision 78.0849358974359 dot_recall 91.13864858545709 euclidean_accuracy 82.66987372218881 euclidean_ap 90.28656734732074 euclidean_f1 84.108318049412 euclidean_precision 78.0849358974359 euclidean_recall 91.13864858545709 manhattan_accuracy 82.70595309681299 manhattan_ap 90.25413574022456 manhattan_f1 83.9924670433145 manhattan_precision 79.81052631578947 manhattan_recall 88.63689501987373 max_accuracy 82.70595309681299 max_ap 90.29346021403634 max_f1 84.108318049412 -
C-MTEB/OCNLI (Validation Split)
Metric Value cos_sim_accuracy 81.15863562533838 cos_sim_ap 84.84571607908443 cos_sim_f1 82.55872063968016 cos_sim_precision 78.36812144212524 cos_sim_recall 87.22280887011615 dot_accuracy 81.15863562533838 dot_ap 84.84571607908443 dot_f1 82.55872063968016 dot_precision 78.36812144212524 dot_recall 87.22280887011615 euclidean_accuracy 81.15863562533838 euclidean_ap 84.84571607908443 euclidean_f1 82.55872063968016 euclidean_precision 78.36812144212524 euclidean_recall 87.22280887011615 manhattan_accuracy 80.7796426637791 manhattan_ap 84.81524098914134 manhattan_f1 82.36462990561351 manhattan_precision 77.76735459662288 manhattan_recall 87.53959873284055 max_accuracy 81.15863562533838 max_ap 84.84571607908443 max_f1 82.55872063968016





