Dmeta Embedding Zh Small
D
Dmeta Embedding Zh Small
由DMetaSoul開發
Dmeta-embedding-zh-small 是一款在多個自然語言處理任務中表現優異的模型,特別適用於中文文本處理。
下載量 10.76k
發布時間 : 3/25/2024
模型概述
該模型在語義文本相似度、分類、聚類、重排序和檢索等任務中表現出色,適用於中文文本的嵌入表示生成。
模型特點
多任務性能優異
在多種自然語言處理任務中均表現出色,包括語義相似度計算、文本分類等。
中文優化
專門針對中文文本進行優化,在中文數據集上表現優異。
高效檢索能力
在檢索任務中展現出高效的性能,適合構建中文搜索引擎或問答系統。
模型能力
語義文本相似度計算
文本分類
文本聚類
檢索結果重排序
信息檢索
使用案例
搜索引擎
中文網頁檢索
用於構建中文網頁搜索引擎的核心嵌入模型
在C-MTEB/CmedqaRetrieval數據集上map@10達到35.952
問答系統
醫療問答檢索
用於醫療領域問答系統的答案檢索
在C-MTEB/CMedQAv1-reranking任務上mrr達到88.799
電商應用
商品評論分類
用於電商平臺商品評論的情感分析和分類
在C-MTEB/JDReview-classification任務上準確率達到85.572
🚀 Dmeta-embedding-zh-small
Dmeta-embedding-zh-small 是一款在多個自然語言處理任務中表現優異的模型,通過在不同數據集上的評估,展現了其在語義文本相似度、分類、聚類、重排序和檢索等任務中的性能。
📚 詳細文檔
模型評估結果
任務類型 | 數據集 | 指標 | 值 |
---|---|---|---|
STS | C-MTEB/AFQMC | cos_sim_pearson | 55.38441014851534 |
STS | C-MTEB/AFQMC | cos_sim_spearman | 59.54284362578262 |
STS | C-MTEB/AFQMC | euclidean_pearson | 58.18592108890414 |
STS | C-MTEB/AFQMC | euclidean_spearman | 59.54284362133902 |
STS | C-MTEB/AFQMC | manhattan_pearson | 58.142197046175916 |
STS | C-MTEB/AFQMC | manhattan_spearman | 59.47943468645265 |
STS | C-MTEB/ATEC | cos_sim_pearson | 55.96911621560259 |
STS | C-MTEB/ATEC | cos_sim_spearman | 58.6334496101353 |
STS | C-MTEB/ATEC | euclidean_pearson | 62.78426382809823 |
STS | C-MTEB/ATEC | euclidean_spearman | 58.63344961011331 |
STS | C-MTEB/ATEC | manhattan_pearson | 62.80625401678188 |
STS | C-MTEB/ATEC | manhattan_spearman | 58.618722128260394 |
Classification | mteb/amazon_reviews_multi | accuracy | 44.88 |
Classification | mteb/amazon_reviews_multi | f1 | 42.739249460584375 |
STS | C-MTEB/BQ | cos_sim_pearson | 68.56815521242152 |
STS | C-MTEB/BQ | cos_sim_spearman | 70.30776353631751 |
STS | C-MTEB/BQ | euclidean_pearson | 69.10087719019191 |
STS | C-MTEB/BQ | euclidean_spearman | 70.30775660748148 |
STS | C-MTEB/BQ | manhattan_pearson | 69.0672710967445 |
STS | C-MTEB/BQ | manhattan_spearman | 70.31940638148254 |
Clustering | C-MTEB/CLSClusteringP2P | v_measure | 40.7861976704356 |
Clustering | C-MTEB/CLSClusteringS2S | v_measure | 38.43028280281822 |
Reranking | C-MTEB/CMedQAv1-reranking | map | 86.78386695617407 |
Reranking | C-MTEB/CMedQAv1-reranking | mrr | 88.79857142857142 |
Reranking | C-MTEB/CMedQAv2-reranking | map | 87.38582377194436 |
Reranking | C-MTEB/CMedQAv2-reranking | mrr | 89.17158730158731 |
Retrieval | C-MTEB/CmedqaRetrieval | map_at_1 | 23.746000000000002 |
Retrieval | C-MTEB/CmedqaRetrieval | map_at_10 | 35.952 |
Retrieval | C-MTEB/CmedqaRetrieval | map_at_100 | 37.946999999999996 |
Retrieval | C-MTEB/CmedqaRetrieval | map_at_1000 | 38.059 |
Retrieval | C-MTEB/CmedqaRetrieval | map_at_3 | 31.680999999999997 |
Retrieval | C-MTEB/CmedqaRetrieval | map_at_5 | 34.046 |
Retrieval | C-MTEB/CmedqaRetrieval | mrr_at_1 | 36.409000000000006 |
Retrieval | C-MTEB/CmedqaRetrieval | mrr_at_10 | 44.801 |
Retrieval | C-MTEB/CmedqaRetrieval | mrr_at_100 | 45.842 |
Retrieval | C-MTEB/CmedqaRetrieval | mrr_at_1000 | 45.885999999999996 |
Retrieval | C-MTEB/CmedqaRetrieval | mrr_at_3 | 42.081 |
Retrieval | C-MTEB/CmedqaRetrieval | mrr_at_5 | 43.613 |
Retrieval | C-MTEB/CmedqaRetrieval | ndcg_at_1 | 36.409000000000006 |
Retrieval | C-MTEB/CmedqaRetrieval | ndcg_at_10 | 42.687000000000005 |
Retrieval | C-MTEB/CmedqaRetrieval | ndcg_at_100 | 50.352 |
Retrieval | C-MTEB/CmedqaRetrieval | ndcg_at_1000 | 52.275000000000006 |
Retrieval | C-MTEB/CmedqaRetrieval | ndcg_at_3 | 37.113 |
Retrieval | C-MTEB/CmedqaRetrieval | ndcg_at_5 | 39.434000000000005 |
Retrieval | C-MTEB/CmedqaRetrieval | precision_at_1 | 36.409000000000006 |
Retrieval | C-MTEB/CmedqaRetrieval | precision_at_10 | 9.712 |
Retrieval | C-MTEB/CmedqaRetrieval | precision_at_100 | 1.584 |
Retrieval | C-MTEB/CmedqaRetrieval | precision_at_1000 | 0.182 |
Retrieval | C-MTEB/CmedqaRetrieval | precision_at_3 | 21.096999999999998 |
Retrieval | C-MTEB/CmedqaRetrieval | precision_at_5 | 15.498999999999999 |
Retrieval | C-MTEB/CmedqaRetrieval | recall_at_1 | 23.746000000000002 |
Retrieval | C-MTEB/CmedqaRetrieval | recall_at_10 | 53.596 |
Retrieval | C-MTEB/CmedqaRetrieval | recall_at_100 | 85.232 |
Retrieval | C-MTEB/CmedqaRetrieval | recall_at_1000 | 98.092 |
Retrieval | C-MTEB/CmedqaRetrieval | recall_at_3 | 37.226 |
Retrieval | C-MTEB/CmedqaRetrieval | recall_at_5 | 44.187 |
PairClassification | C-MTEB/CMNLI | cos_sim_accuracy | 82.66987372218881 |
PairClassification | C-MTEB/CMNLI | cos_sim_ap | 90.28715189799232 |
PairClassification | C-MTEB/CMNLI | cos_sim_f1 | 84.108318049412 |
PairClassification | C-MTEB/CMNLI | cos_sim_precision | 78.0849358974359 |
PairClassification | C-MTEB/CMNLI | cos_sim_recall | 91.13864858545709 |
PairClassification | C-MTEB/CMNLI | dot_accuracy | 82.66987372218881 |
PairClassification | C-MTEB/CMNLI | dot_ap | 90.29346021403634 |
PairClassification | C-MTEB/CMNLI | dot_f1 | 84.108318049412 |
PairClassification | C-MTEB/CMNLI | dot_precision | 78.0849358974359 |
PairClassification | C-MTEB/CMNLI | dot_recall | 91.13864858545709 |
PairClassification | C-MTEB/CMNLI | euclidean_accuracy | 82.66987372218881 |
PairClassification | C-MTEB/CMNLI | euclidean_ap | 90.28656734732074 |
PairClassification | C-MTEB/CMNLI | euclidean_f1 | 84.108318049412 |
PairClassification | C-MTEB/CMNLI | euclidean_precision | 78.0849358974359 |
PairClassification | C-MTEB/CMNLI | euclidean_recall | 91.13864858545709 |
PairClassification | C-MTEB/CMNLI | manhattan_accuracy | 82.70595309681299 |
PairClassification | C-MTEB/CMNLI | manhattan_ap | 90.25413574022456 |
PairClassification | C-MTEB/CMNLI | manhattan_f1 | 83.9924670433145 |
PairClassification | C-MTEB/CMNLI | manhattan_precision | 79.81052631578947 |
PairClassification | C-MTEB/CMNLI | manhattan_recall | 88.63689501987373 |
PairClassification | C-MTEB/CMNLI | max_accuracy | 82.70595309681299 |
PairClassification | C-MTEB/CMNLI | max_ap | 90.29346021403634 |
PairClassification | C-MTEB/CMNLI | max_f1 | 84.108318049412 |
Retrieval | C-MTEB/CovidRetrieval | map_at_1 | 61.38 |
Retrieval | C-MTEB/CovidRetrieval | map_at_10 | 71.23 |
Retrieval | C-MTEB/CovidRetrieval | map_at_100 | 71.61800000000001 |
Retrieval | C-MTEB/CovidRetrieval | map_at_1000 | 71.63000000000001 |
Retrieval | C-MTEB/CovidRetrieval | map_at_3 | 69.31 |
Retrieval | C-MTEB/CovidRetrieval | map_at_5 | 70.403 |
Retrieval | C-MTEB/CovidRetrieval | mrr_at_1 | 61.538000000000004 |
Retrieval | C-MTEB/CovidRetrieval | mrr_at_10 | 71.28999999999999 |
Retrieval | C-MTEB/CovidRetrieval | mrr_at_100 | 71.666 |
Retrieval | C-MTEB/CovidRetrieval | mrr_at_1000 | 71.678 |
Retrieval | C-MTEB/CovidRetrieval | mrr_at_3 | 69.44200000000001 |
Retrieval | C-MTEB/CovidRetrieval | mrr_at_5 | 70.506 |
Retrieval | C-MTEB/CovidRetrieval | ndcg_at_1 | 61.538000000000004 |
Retrieval | C-MTEB/CovidRetrieval | ndcg_at_10 | 75.626 |
Retrieval | C-MTEB/CovidRetrieval | ndcg_at_100 | 77.449 |
Retrieval | C-MTEB/CovidRetrieval | ndcg_at_1000 | 77.73400000000001 |
Retrieval | C-MTEB/CovidRetrieval | ndcg_at_3 | 71.75200000000001 |
Retrieval | C-MTEB/CovidRetrieval | ndcg_at_5 | 73.695 |
Retrieval | C-MTEB/CovidRetrieval | precision_at_1 | 61.538000000000004 |
Retrieval | C-MTEB/CovidRetrieval | precision_at_10 | 9.009 |
Retrieval | C-MTEB/CovidRetrieval | precision_at_100 | 0.9860000000000001 |
Retrieval | C-MTEB/CovidRetrieval | precision_at_1000 | 0.101 |
Retrieval | C-MTEB/CovidRetrieval | precision_at_3 | 26.379 |
Retrieval | C-MTEB/CovidRetrieval | precision_at_5 | 16.797 |
Retrieval | C-MTEB/CovidRetrieval | recall_at_1 | 61.38 |
Retrieval | C-MTEB/CovidRetrieval | recall_at_10 | 89.199 |
Retrieval | C-MTEB/CovidRetrieval | recall_at_100 | 97.576 |
Retrieval | C-MTEB/CovidRetrieval | recall_at_1000 | 99.789 |
Retrieval | C-MTEB/CovidRetrieval | recall_at_3 | 78.635 |
Retrieval | C-MTEB/CovidRetrieval | recall_at_5 | 83.325 |
Retrieval | C-MTEB/DuRetrieval | map_at_1 | 23.067 |
Retrieval | C-MTEB/DuRetrieval | map_at_10 | 70.658 |
Retrieval | C-MTEB/DuRetrieval | map_at_100 | 73.85300000000001 |
Retrieval | C-MTEB/DuRetrieval | map_at_1000 | 73.925 |
Retrieval | C-MTEB/DuRetrieval | map_at_3 | 48.391 |
Retrieval | C-MTEB/DuRetrieval | map_at_5 | 61.172000000000004 |
Retrieval | C-MTEB/DuRetrieval | mrr_at_1 | 83.1 |
Retrieval | C-MTEB/DuRetrieval | mrr_at_10 | 88.214 |
Retrieval | C-MTEB/DuRetrieval | mrr_at_100 | 88.298 |
Retrieval | C-MTEB/DuRetrieval | mrr_at_1000 | 88.304 |
Retrieval | C-MTEB/DuRetrieval | mrr_at_3 | 87.717 |
Retrieval | C-MTEB/DuRetrieval | mrr_at_5 | 88.03699999999999 |
Retrieval | C-MTEB/DuRetrieval | ndcg_at_1 | 83.1 |
Retrieval | C-MTEB/DuRetrieval | ndcg_at_10 | 79.89 |
Retrieval | C-MTEB/DuRetrieval | ndcg_at_100 | 83.829 |
Retrieval | C-MTEB/DuRetrieval | ndcg_at_1000 | 84.577 |
Retrieval | C-MTEB/DuRetrieval | ndcg_at_3 | 78.337 |
Retrieval | C-MTEB/DuRetrieval | ndcg_at_5 | 77.224 |
Retrieval | C-MTEB/DuRetrieval | precision_at_1 | 83.1 |
Retrieval | C-MTEB/DuRetrieval | precision_at_10 | 38.934999999999995 |
Retrieval | C-MTEB/DuRetrieval | precision_at_100 | 4.6690000000000005 |
Retrieval | C-MTEB/DuRetrieval | precision_at_1000 | 0.484 |
Retrieval | C-MTEB/DuRetrieval | precision_at_3 | 70.48299999999999 |
Retrieval | C-MTEB/DuRetrieval | precision_at_5 | 59.68 |
Retrieval | C-MTEB/DuRetrieval | recall_at_1 | 23.067 |
Retrieval | C-MTEB/DuRetrieval | recall_at_10 | 81.702 |
Retrieval | C-MTEB/DuRetrieval | recall_at_100 | 94.214 |
Retrieval | C-MTEB/DuRetrieval | recall_at_1000 | 98.241 |
Retrieval | C-MTEB/DuRetrieval | recall_at_3 | 51.538 |
Retrieval | C-MTEB/DuRetrieval | recall_at_5 | 67.39 |
Retrieval | C-MTEB/EcomRetrieval | map_at_1 | 49.8 |
Retrieval | C-MTEB/EcomRetrieval | map_at_10 | 59.46399999999999 |
Retrieval | C-MTEB/EcomRetrieval | map_at_100 | 60.063 |
Retrieval | C-MTEB/EcomRetrieval | map_at_1000 | 60.08 |
Retrieval | C-MTEB/EcomRetrieval | map_at_3 | 56.833 |
Retrieval | C-MTEB/EcomRetrieval | map_at_5 | 58.438 |
Retrieval | C-MTEB/EcomRetrieval | mrr_at_1 | 49.8 |
Retrieval | C-MTEB/EcomRetrieval | mrr_at_10 | 59.46399999999999 |
Retrieval | C-MTEB/EcomRetrieval | mrr_at_100 | 60.063 |
Retrieval | C-MTEB/EcomRetrieval | mrr_at_1000 | 60.08 |
Retrieval | C-MTEB/EcomRetrieval | mrr_at_3 | 56.833 |
Retrieval | C-MTEB/EcomRetrieval | mrr_at_5 | 58.438 |
Retrieval | C-MTEB/EcomRetrieval | ndcg_at_1 | 49.8 |
Retrieval | C-MTEB/EcomRetrieval | ndcg_at_10 | 64.48 |
Retrieval | C-MTEB/EcomRetrieval | ndcg_at_100 | 67.314 |
Retrieval | C-MTEB/EcomRetrieval | ndcg_at_1000 | 67.745 |
Retrieval | C-MTEB/EcomRetrieval | ndcg_at_3 | 59.06400000000001 |
Retrieval | C-MTEB/EcomRetrieval | ndcg_at_5 | 61.973 |
Retrieval | C-MTEB/EcomRetrieval | precision_at_1 | 49.8 |
Retrieval | C-MTEB/EcomRetrieval | precision_at_10 | 8.04 |
Retrieval | C-MTEB/EcomRetrieval | precision_at_100 | 0.935 |
Retrieval | C-MTEB/EcomRetrieval | precision_at_1000 | 0.097 |
Retrieval | C-MTEB/EcomRetrieval | precision_at_3 | 21.833 |
Retrieval | C-MTEB/EcomRetrieval | precision_at_5 | 14.52 |
Retrieval | C-MTEB/EcomRetrieval | recall_at_1 | 49.8 |
Retrieval | C-MTEB/EcomRetrieval | recall_at_10 | 80.4 |
Retrieval | C-MTEB/EcomRetrieval | recall_at_100 | 93.5 |
Retrieval | C-MTEB/EcomRetrieval | recall_at_1000 | 96.8 |
Retrieval | C-MTEB/EcomRetrieval | recall_at_3 | 65.5 |
Retrieval | C-MTEB/EcomRetrieval | recall_at_5 | 72.6 |
Classification | C-MTEB/IFlyTek-classification | accuracy | 49.111196614082345 |
Classification | C-MTEB/IFlyTek-classification | f1 | 37.07930546974089 |
Classification | C-MTEB/JDReview-classification | accuracy | 85.57223264540339 |
Classification | C-MTEB/JDReview-classification | ap | 53.30690968994808 |
Classification | C-MTEB/JDReview-classification | f1 | 80.20587062271773 |
STS | C-MTEB/LCQMC | cos_sim_pearson | 73.03085269274996 |
STS | C-MTEB/LCQMC | cos_sim_spearman | 78.72837937949888 |
STS | C-MTEB/LCQMC | euclidean_pearson | 78.34911745798928 |
STS | C-MTEB/LCQMC | euclidean_spearman | 78.72838602779268 |
STS | C-MTEB/LCQMC | manhattan_pearson | 78.31833697617105 |
STS | C-MTEB/LCQMC | manhattan_spearman | 78.69603741566397 |
Reranking | C-MTEB/Mmarco-reranking | map | 27.391692468538416 |
Reranking | C-MTEB/Mmarco-reranking | mrr | 26.44682539682539 |
Retrieval | C-MTEB/MMarcoRetrieval | map_at_1 | 57.206999999999994 |
Retrieval | C-MTEB/MMarcoRetrieval | map_at_10 | 66.622 |
Retrieval | C-MTEB/MMarcoRetrieval | map_at_100 | 67.12700000000001 |
Retrieval | C-MTEB/MMarcoRetrieval | map_at_1000 | 67.145 |
Retrieval | C-MTEB/MMarcoRetrieval | map_at_3 | 64.587 |
Retrieval | C-MTEB/MMarcoRetrieval | map_at_5 | 65.827 |
Retrieval | C-MTEB/MMarcoRetrieval | mrr_at_1 | 59.312 |
Retrieval | C-MTEB/MMarcoRetrieval | mrr_at_10 | 67.387 |
Retrieval | C-MTEB/MMarcoRetrieval | mrr_at_100 | 67.836 |
Retrieval | C-MTEB/MMarcoRetrieval | mrr_at_1000 | 67.851 |
Retrieval | C-MTEB/MMarcoRetrieval | mrr_at_3 | 65.556 |
Retrieval | C-MTEB/MMarcoRetrieval | mrr_at_5 | 66.66 |
Retrieval | C-MTEB/MMarcoRetrieval | ndcg_at_1 | 59.312 |
Retrieval | C-MTEB/MMarcoRetrieval | ndcg_at_10 | 70.748 |
Retrieval | C-MTEB/MMarcoRetrieval | ndcg_at_100 | 73.076 |
Retrieval | C-MTEB/MMarcoRetrieval | ndcg_at_1000 | 73.559 |
Retrieval | C-MTEB/MMarcoRetrieval | ndcg_at_3 | 66.81200000000001 |
Retrieval | C-MTEB/MMarcoRetrieval | ndcg_at_5 | 68.92399999999999 |
Retrieval | C-MTEB/MMarcoRetrieval | precision_at_1 | 59.312 |
Retrieval | C-MTEB/MMarcoRetrieval | precision_at_10 | 8.798 |
Retrieval | C-MTEB/MMarcoRetrieval | precision_at_100 | 0.996 |
Retrieval | C-MTEB/MMarcoRetrieval | precision_at_1000 | 0.104 |
Retrieval | C-MTEB/MMarcoRetrieval | precision_at_3 | 25.487 |
Retrieval | C-MTEB/MMarcoRetrieval | precision_at_5 | 16.401 |
Retrieval | C-MTEB/MMarcoRetrieval | recall_at_1 | 57.206999999999994 |
Retrieval | C-MTEB/MMarcoRetrieval | recall_at_10 | 82.767 |
Retrieval | C-MTEB/MMarcoRetrieval | recall_at_100 | 93.449 |
Retrieval | C-MTEB/MMarcoRetrieval | recall_at_1000 | 97.262 |
Retrieval | C-MTEB/MMarcoRetrieval | recall_at_3 | 72.271 |
Retrieval | C-MTEB/MMarcoRetrieval | recall_at_5 | 77.291 |
Classification | mteb/amazon_massive_intent | accuracy | 70.78345662407531 |
Classification | mteb/amazon_massive_intent | f1 | 68.35683436974351 |
Classification | mteb/amazon_massive_scenario | accuracy | 73.16408876933423 |
Classification | mteb/amazon_massive_scenario | f1 | 73.31484873459382 |
Retrieval | C-MTEB/MedicalRetrieval | map_at_1 | 51.4 |
Retrieval | C-MTEB/MedicalRetrieval | map_at_10 | 57.091 |
Retrieval | C-MTEB/MedicalRetrieval | map_at_100 | 57.652 |
Retrieval | C-MTEB/MedicalRetrieval | map_at_1000 | 57.703 |
Retrieval | C-MTEB/MedicalRetrieval | map_at_3 | 55.733 |
Retrieval | C-MTEB/MedicalRetrieval | map_at_5 | 56.363 |
Retrieval | C-MTEB/MedicalRetrieval | mrr_at_1 | 51.7 |
Retrieval | C-MTEB/MedicalRetrieval | mrr_at_10 | 57.243 |
Retrieval | C-MTEB/MedicalRetrieval | mrr_at_100 | 57.80499999999999 |
Retrieval | C-MTEB/MedicalRetrieval | mrr_at_1000 | 57.855999999999995 |
Retrieval | C-MTEB/MedicalRetrieval | mrr_at_3 | 55.883 |
Retrieval | C-MTEB/MedicalRetrieval | mrr_at_5 | 56.513000000000005 |
Retrieval | C-MTEB/MedicalRetrieval | ndcg_at_1 | 51.4 |
Retrieval | C-MTEB/MedicalRetrieval | ndcg_at_10 | 59.948 |
Retrieval | C-MTEB/MedicalRetrieval | ndcg_at_100 | 63.064 |
Retrieval | C-MTEB/MedicalRetrieval | ndcg_at_1000 | 64.523 |
Retrieval | C-MTEB/MedicalRetrieval | ndcg_at_3 | 57.089999999999996 |
Retrieval | C-MTEB/MedicalRetrieval | ndcg_at_5 | 58.214 |
Retrieval | C-MTEB/MedicalRetrieval | precision_at_1 | 51.4 |
Retrieval | C-MTEB/MedicalRetrieval | precision_at_10 | 6.9 |
Retrieval | C-MTEB/MedicalRetrieval | precision_at_100 | 0.845 |
Retrieval | C-MTEB/MedicalRetrieval | precision_at_1000 | 0.096 |
Retrieval | C-MTEB/MedicalRetrieval | precision_at_3 | 20.333000000000002 |
Retrieval | C-MTEB/MedicalRetrieval | precision_at_5 | 12.740000000000002 |
Retrieval | C-MTEB/MedicalRetrieval | recall_at_1 | 51.4 |
Retrieval | C-MTEB/MedicalRetrieval | recall_at_10 | 69.0 |
Retrieval | C-MTEB/MedicalRetrieval | recall_at_100 | 84.5 |
Retrieval | C-MTEB/MedicalRetrieval | recall_at_1000 | 96.2 |
Retrieval | C-MTEB/MedicalRetrieval | recall_at_3 | 61.0 |
Retrieval | C-MTEB/MedicalRetrieval | recall_at_5 | 63.7 |
Classification | C-MTEB/MultilingualSentiment-classification | accuracy | 74.38999999999999 |
Classification | C-MTEB/MultilingualSentiment-classification | f1 | 74.07161306140839 |
PairClassification | C-MTEB/OCNLI | cos_sim_accuracy | 81.15863562533838 |
PairClassification | C-MTEB/OCNLI | cos_sim_ap | 84.84571607908443 |
PairClassification | C-MTEB/OCNLI | cos_sim_f1 | 82.55872063968016 |
PairClassification | C-MTEB/OCNLI | cos_sim_precision | 78.36812144212524 |
PairClassification | C-MTEB/OCNLI | cos_sim_recall | 87.22280887011615 |
PairClassification | C-MTEB/OCNLI | dot_accuracy | 81.15863562533838 |
PairClassification | C-MTEB/OCNLI | dot_ap | 84.84571607908443 |
PairClassification | C-MTEB/OCNLI | dot_f1 | 82.55872063968016 |
PairClassification | C-MTEB/OCNLI | dot_precision | 78.36812144212524 |
PairClassification | C-MTEB/OCNLI | dot_recall | 87.22280887011615 |
PairClassification | C-MTEB/OCNLI | euclidean_accuracy | 81.15863562533838 |
PairClassification | C-MTEB/OCNLI | euclidean_ap | 84.84571607908443 |
PairClassification | C-MTEB/OCNLI | euclidean_f1 | 82.55872063968016 |
PairClassification | C-MTEB/OCNLI | euclidean_precision | 78.36812144212524 |
PairClassification | C-MTEB/OCNLI | euclidean_recall | 87.22280887011615 |
PairClassification | C-MTEB/OCNLI | manhattan_accuracy | 80.7796426637791 |
PairClassification | C-MTEB/OCNLI | manhattan_ap | 84.81524098914134 |
PairClassification | C-MTEB/OCNLI | manhattan_f1 | 82.36462990561351 |
PairClassification | C-MTEB/OCNLI | manhattan_precision | 77.76735459662288 |
PairClassification | C-MTEB/OCNLI | manhattan_recall | 87.53959873284055 |
PairClassification | C-MTEB/OCNLI | max_accuracy | 81.15863562533838 |
PairClassification | C-MTEB/OCNLI | max_ap | 84.84571607908443 |
PairClassification | C-MTEB/OCNLI | max_f1 | 82.55872063968016 |
Classification | C-MTEB/OnlineShopping-classification | accuracy | 93.12000000000002 |
Classification | C-MTEB/OnlineShopping-classification | ap | 91.0749103088623 |
Classification | C-MTEB/OnlineShopping-classification | f1 | 93.10837266607813 |
STS | C-MTEB/PAWSX | cos_sim_pearson | 38.5692290188029 |
STS | C-MTEB/PAWSX | cos_sim_spearman | 42.965264868554335 |
STS | C-MTEB/PAWSX | euclidean_pearson | 43.002526263615735 |
STS | C-MTEB/PAWSX | euclidean_spearman | 42.97561576045246 |
STS | C-MTEB/PAWSX | manhattan_pearson | 43.050089639788936 |
STS | C-MTEB/PAWSX | manhattan_spearman | 43.038497558804934 |
STS | C-MTEB/QBQTC | cos_sim_pearson | 38.99284895602663 |
STS | C-MTEB/QBQTC | cos_sim_spearman | 41.02655813481606 |
STS | C-MTEB/QBQTC | euclidean_pearson | 38.934953519378354 |
STS | C-MTEB/QBQTC | euclidean_spearman | 41.02680077136343 |
STS | C-MTEB/QBQTC | manhattan_pearson | 39.224809609807785 |
STS | C-MTEB/QBQTC | manhattan_spearman | 41.13950779185706 |
STS | mteb/sts22-crosslingual-sts | cos_sim_pearson | 66.47464607633356 |
STS | mteb/sts22-crosslingual-sts | cos_sim_spearman | 66.76311382148693 |
STS | mteb/sts22-crosslingual-sts | euclidean_pearson | 67.25180409604143 |
STS | mteb/sts22-crosslingual-sts | euclidean_spearman | 66.76311382148693 |
STS | mteb/sts22-crosslingual-sts | manhattan_pearson | 67.6928257682864 |
STS | mteb/sts22-crosslingual-sts | manhattan_spearman | 67.08172581019826 |
STS | C-MTEB/STSB |
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers 支持多種語言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors 英語
G
avsolatorio
945.68k
29
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98