đ lora-Maurice-Prendergast-Flux
This project is a LoRA model derived from black-forest-labs/FLUX.1-dev, which is designed for text-to-image generation tasks.
đ Quick Start
Prerequisites
- Install necessary libraries:
pip install diffusers torch
Inference Example
import torch
from diffusers import DiffusionPipeline
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'davidrd123/lora-Maurice-Prendergast-Flux'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)
prompt = "mp_style, Street scene, 50 figures (many women: colorful dresses, many men: suits), 23 umbrellas (orange, red, yellow, green), bridge, buildings background, water, boats, Italian flag, steps, lamps, crowd ascending descending bridge, signature bottom-left"
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1024,
height=1024,
guidance_scale=7.5,
).images[0]
image.save("output.png", format="PNG")
⨠Features
- Based on the
black-forest-labs/FLUX.1-dev
base model.
- Supports text-to-image generation with specific styles.
- Uses LoRA technology for efficient fine-tuning.
đĻ Installation
To use this LoRA model, you need to install the diffusers
and torch
libraries:
pip install diffusers torch
đģ Usage Examples
Basic Usage
import torch
from diffusers import DiffusionPipeline
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'davidrd123/lora-Maurice-Prendergast-Flux'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)
prompt = "mp_style, Street scene, 50 figures (many women: colorful dresses, many men: suits), 23 umbrellas (orange, red, yellow, green), bridge, buildings background, water, boats, Italian flag, steps, lamps, crowd ascending descending bridge, signature bottom-left"
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1024,
height=1024,
guidance_scale=7.5,
).images[0]
image.save("output.png", format="PNG")
đ Documentation
Validation settings
Parameter |
Value |
CFG |
7.5 |
CFG Rescale |
0.0 |
Steps |
20 |
Sampler |
None |
Seed |
42 |
Resolution |
1024 |
Note: The validation settings are not necessarily the same as the training settings.
Training settings
Parameter |
Value |
Training epochs |
235 |
Training steps |
4000 |
Learning rate |
0.0004 |
Effective batch size |
6 |
Micro - batch size |
6 |
Gradient accumulation steps |
1 |
Number of GPUs |
1 |
Prediction type |
flow - matching |
Rescaled betas zero SNR |
False |
Optimizer |
AdamW, stochastic bf16 |
Precision |
Pure BF16 |
Xformers |
Not used |
LoRA Rank |
64 |
LoRA Alpha |
None |
LoRA Dropout |
0.1 |
LoRA initialisation style |
default |
Datasets - MauricePrendergastRedo3
Attribute |
Details |
Repeats |
0 |
Total number of images |
102 |
Total number of aspect buckets |
1 |
Resolution |
1024 px |
Cropped |
True |
Crop style |
center |
Crop aspect |
square |
đ§ Technical Details
This LoRA model is derived from the black-forest-labs/FLUX.1-dev
base model. It uses the LoRA technique for fine-tuning, which allows for more efficient training and adaptation to specific datasets. The training process involves multiple settings such as the optimizer, precision, and LoRA parameters, which are carefully configured to achieve the best performance.
đ License
This project is licensed under the creativeml-openrail-m
license.