Xlm Roberta Ua Distilled
This is a fine-tuned sentence transformer model based on xlm-roberta-base, supporting English and Ukrainian, suitable for tasks like semantic textual similarity and semantic search.
Downloads 121
Release Time : 4/13/2025
Model Overview
The model maps sentences and paragraphs into a 768-dimensional dense vector space, applicable for tasks such as semantic textual similarity, semantic search, paraphrase mining, text classification, and clustering.
Model Features
Multilingual Support
Supports semantic understanding and similarity calculation for English and Ukrainian.
High-dimensional Vector Representation
Maps text to a 768-dimensional dense vector space, capturing rich semantic information.
Knowledge Distillation Training
Optimizes model performance through knowledge distillation methods.
Model Capabilities
Semantic textual similarity calculation
Cross-lingual semantic search
Text vectorization representation
Multilingual text classification
Text clustering analysis
Use Cases
Cross-lingual Information Retrieval
English-Ukrainian Document Search
Use English queries to retrieve Ukrainian documents.
Pearson similarity 0.5926 (sts17-en-ua dataset)
Semantic Similarity Analysis
Same-language Text Similarity Evaluation
Evaluate semantic similarity of English or Ukrainian text pairs.
English-English Spearman similarity 0.7308 (sts17-en-en dataset)
🚀 SentenceTransformer based on FacebookAI/xlm-roberta-base
This is a Sentence Transformer model that maps sentences and paragraphs to a 768 - dimensional dense vector space. It can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
👉 Check out the model on GitHub.
🚀 Quick Start
This is a sentence-transformers model finetuned from FacebookAI/xlm-roberta-base. It maps sentences & paragraphs to a 768 - dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
✨ Features
- Maps sentences and paragraphs to a 768 - dimensional dense vector space.
- Applicable for various NLP tasks such as semantic textual similarity, semantic search, paraphrase mining, text classification, and clustering.
📦 Installation
First install the Sentence Transformers library:
pip install -U sentence-transformers
💻 Usage Examples
Basic Usage
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("panalexeu/xlm-roberta-ua-distilled")
# Run inference
sentences = [
"You'd better consult the doctor.",
'Краще проконсультуйся у лікаря.',
'Їх позначають як Aufklärungsfahrzeug 93 та Aufklärungsfahrzeug 97 відповідно.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 Documentation
Model Details
Model Description
Property | Details |
---|---|
Model Type | Sentence Transformer |
Base model | FacebookAI/xlm-roberta-base |
Maximum Sequence Length | 512 tokens |
Output Dimensionality | 768 dimensions |
Similarity Function | Cosine Similarity |
Training Dataset | parallel-sentences-talks, parallel-sentences-wikimatrix, parallel-sentences-tatoeba |
Language | Ukrainian, English |
License | MIT |
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Evaluation
Metrics
Knowledge Distillation
- Dataset:
mse-en-ua
- Evaluated with
MSEEvaluator
Metric | Value |
---|---|
negative_mse | -1.1089 |
Semantic Similarity
- Datasets:
sts17-en-en
,sts17-en-ua
andsts17-ua-ua
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | sts17-en-en | sts17-en-ua | sts17-ua-ua |
---|---|---|---|
pearson_cosine | 0.6785 | 0.5926 | 0.6159 |
spearman_cosine | 0.7308 | 0.6198 | 0.6446 |
Training Details
Training Dataset
- Dataset: parallel-sentences-talks, parallel-sentences-wikimatrix, parallel-sentences-tatoeba
- Size: 523,982 training samples
- Columns:
english
,non_english
, andlabel
- Approximate statistics based on the first 1000 samples:
english non_english label type string string list details - min: 5 tokens
- mean: 21.11 tokens
- max: 254 tokens
- min: 4 tokens
- mean: 23.15 tokens
- max: 293 tokens
- size: 768 elements
- Samples:
english non_english label Her real name is Lydia (リディア, Ridia), but she was mistaken for a boy and called Ricard.
Справжнє ім'я — Лідія, але її помилково сприйняли за хлопчика і назвали Рікард.
[0.15217968821525574, -0.17830222845077515, -0.12677159905433655, 0.22082313895225525, 0.40085524320602417, ...]
(Applause) So he didn't just learn water.
(Аплодисменти) Він не тільки вивчив слово "вода".
[-0.1058148592710495, -0.08846072107553482, -0.2684604823589325, -0.105219267308712, 0.3050258755683899, ...]
It is tightly integrated with SAM, the Storage and Archive Manager, and hence is often referred to as SAM-QFS.
Вона тісно інтегрована з SAM (Storage and Archive Manager), тому часто називається SAM-QFS.
[0.03270340710878372, -0.45798248052597046, -0.20090211927890778, 0.006579531356692314, -0.03178019821643829, ...]
- Loss:
MSELoss
Evaluation Dataset
- Dataset: parallel-sentences-talks, parallel-sentences-wikimatrix, parallel-sentences-tatoeba
- Size: 3,838 evaluation samples
- Columns:
english
,non_english
, andlabel
- Approximate statistics based on the first 1000 samples:
english non_english label type string string list details - min: 5 tokens
- mean: 15.64 tokens
- max: 143 tokens
- min: 5 tokens
- mean: 16.98 tokens
- max: 148 tokens
- size: 768 elements
- Samples:
english non_english label I have lost my wallet.
Я загубив гаманець.
[-0.11186987161636353, -0.03419225662946701, -0.31304317712783813, 0.0838347002863884, 0.108644500374794, ...]
It's a pharmaceutical product.
Це фармацевтичний продукт.
[0.04133488982915878, -0.4182000756263733, -0.30786487460136414, -0.09351564198732376, -0.023946482688188553, ...]
We've all heard of the Casual Friday thing.
Всі ми чули про «джинсову п’ятницю» (вільна форма одягу).
[-0.10697802156209946, 0.21002227067947388, -0.2513434886932373, -0.3718843460083008, 0.06871984899044037, ...]
- Loss:
MSELoss
Training Hyperparameters
Non - Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16gradient_accumulation_steps
: 3num_train_epochs
: 4warmup_ratio
: 0.1
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 3eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e - 05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e - 08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | mse - en - ua_negative_mse | sts17 - en - en_spearman_cosine | sts17 - en - ua_spearman_cosine | sts17 - ua - ua_spearman_cosine |
---|---|---|---|---|---|---|---|
0.0938 | 1024 | 0.3281 | 0.0297 | -2.9592 | 0.2325 | 0.1547 | 0.2265 |
0.1876 | 2048 | 0.1136 | 0.2042 | -21.6693 | 0.0553 | 0.0429 | 0.2442 |
0.2814 | 3072 | 0.1008 | 0.0273 | -2.7461 | 0.2666 | 0.0758 | 0.2613 |
0.3752 | 4096 | 0.0843 | 0.0243 | -2.4623 | 0.2541 | 0.0012 | 0.3680 |
0.4690 | 5120 | 0.0756 | 0.0216 | -2.2095 | 0.3933 | 0.2535 | 0.4342 |
0.5628 | 6144 | 0.0661 | 0.0187 | -1.9539 | 0.5739 | 0.4222 | 0.5056 |
0.6566 | 7168 | 0.0579 | 0.0164 | -1.7513 | 0.6184 | 0.4897 | 0.5826 |
0.7504 | 8192 | 0.0526 | 0.0153 | -1.6546 | 0.6219 | 0.4568 | 0.5842 |
0.8442 | 9216 | 0.0488 | 0.0142 | -1.5525 | 0.6160 | 0.5012 | 0.5884 |
0.9380 | 10240 | 0.046 | 0.0135 | -1.4957 | 0.6361 | 0.5046 | 0.5969 |
1.0318 | 11264 | 0.0437 | 0.0130 | -1.4506 | 0.6453 | 0.5093 | 0.5939 |
1.1256 | 12288 | 0.0419 | 0.0125 | -1.4049 | 0.6403 | 0.5054 | 0.6020 |
1.2194 | 13312 | 0.0404 | 0.0122 | -1.3794 | 0.6654 | 0.5442 | 0.6182 |
1.3132 | 14336 | 0.0394 | 0.0118 | -1.3434 | 0.6800 | 0.5790 | 0.6291 |
1.4070 | 15360 | 0.0383 | 0.0115 | -1.3184 | 0.6836 | 0.5805 | 0.6301 |
1.5008 | 16384 | 0.0375 | 0.0114 | -1.3067 | 0.6742 | 0.5555 | 0.6055 |
1.5946 | 17408 | 0.0368 | 0.0111 | -1.2864 | 0.6909 | 0.5765 | 0.6256 |
1.6884 | 18432 | 0.036 | 0.0109 | -1.2633 | 0.6875 | 0.5801 | 0.6178 |
1.7822 | 19456 | 0.0353 | 0.0107 | -1.2490 | 0.7060 | 0.5959 | 0.6322 |
1.8760 | 20480 | 0.035 | 0.0106 | -1.2357 | 0.7127 | 0.6047 | 0.6282 |
📄 License
This model is licensed under the MIT license.
Jina Embeddings V3
Jina Embeddings V3 is a multilingual sentence embedding model supporting over 100 languages, specializing in sentence similarity and feature extraction tasks.
Text Embedding
Transformers Supports Multiple Languages

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
A cross-encoder model trained on the MS Marco passage ranking task for query-passage relevance scoring in information retrieval
Text Embedding English
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
A sparse retrieval model based on distillation technology, optimized for OpenSearch, supporting inference-free document encoding with improved search relevance and efficiency over V1
Text Embedding
Transformers English

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
A biomedical entity representation model based on PubMedBERT, optimized for semantic relation capture through self-aligned pre-training
Text Embedding English
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large is a powerful sentence transformer model focused on sentence similarity and text embedding tasks, excelling in multiple benchmark tests.
Text Embedding English
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 is an English sentence transformer model focused on sentence similarity tasks, excelling in multiple text embedding benchmarks.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base is a multilingual sentence embedding model supporting over 50 languages, suitable for tasks like sentence similarity calculation.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT is a chemical language model designed to achieve fully machine-driven ultrafast polymer informatics. It maps PSMILES strings into 600-dimensional dense fingerprints to numerically represent polymer chemical structures.
Text Embedding
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
A sentence embedding model based on Turkish BERT, optimized for semantic similarity tasks
Text Embedding
Transformers Other

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
A text embedding model fine-tuned based on BAAI/bge-small-en-v1.5, trained with the MEDI dataset and MTEB classification task datasets, optimized for query encoding in retrieval tasks.
Text Embedding
Safetensors English
G
avsolatorio
945.68k
29
Featured Recommended AI Models