Giga Embeddings Instruct
G
Giga Embeddings Instruct
Developed by ai-sage
Giga Embeddings Instruct is a high-performance embedding model focused on text classification and retrieval tasks, excelling in multiple benchmark tests.
Downloads 11.97k
Release Time : 12/11/2024
Model Overview
This model is primarily used for text embedding and classification tasks, capable of efficiently processing text data such as Amazon product reviews, supporting multiple languages and complex query scenarios.
Model Features
High-accuracy classification
Achieves 94.5% accuracy in Amazon counterfactual classification tasks
Powerful retrieval capability
Performs excellently in ArguAna retrieval tasks, supporting complex query scenarios
Multi-metric optimization
Simultaneously optimizes multiple performance metrics including accuracy, F1 score, and average precision
Model Capabilities
Text classification
Information retrieval
Sentiment analysis
Text embedding
Use Cases
E-commerce
Product review classification
Classify Amazon product reviews as positive or negative
Achieves 94.3% accuracy in Amazon polarity classification tasks
Counterfactual review detection
Identify counterfactual reviews on Amazon platform
Achieves 94.5% accuracy in en-ext configuration
Information retrieval
Argument retrieval
Perform argument relevance retrieval on ArguAna dataset
NDCG@10 reaches 53.23
🚀 giga-embeddings-instruct
This document presents the performance metrics of the giga-embeddings-instruct
model on multiple datasets in different tasks such as Classification, Retrieval, Reranking, and STS.
📚 Documentation
Model Performance Metrics
Dataset Name | Task Type | Metrics | Value |
---|---|---|---|
MTEB AmazonCounterfactualClassification (en-ext) | Classification | accuracy | 94.5352323838081 |
MTEB AmazonCounterfactualClassification (en-ext) | Classification | ap | 62.422648408367344 |
MTEB AmazonCounterfactualClassification (en-ext) | Classification | ap_weighted | 62.422648408367344 |
MTEB AmazonCounterfactualClassification (en-ext) | Classification | f1 | 87.13103677336655 |
MTEB AmazonCounterfactualClassification (en-ext) | Classification | f1_weighted | 94.85637995412655 |
MTEB AmazonCounterfactualClassification (en-ext) | Classification | main_score | 94.5352323838081 |
MTEB AmazonCounterfactualClassification (en) | Classification | accuracy | 90.31343283582089 |
MTEB AmazonCounterfactualClassification (en) | Classification | ap | 63.42364739316405 |
MTEB AmazonCounterfactualClassification (en) | Classification | ap_weighted | 63.42364739316405 |
MTEB AmazonCounterfactualClassification (en) | Classification | f1 | 85.54214552412623 |
MTEB AmazonCounterfactualClassification (en) | Classification | f1_weighted | 90.59539168268289 |
MTEB AmazonCounterfactualClassification (en) | Classification | main_score | 90.31343283582089 |
MTEB AmazonPolarityClassification (default) | Classification | accuracy | 94.29605000000001 |
MTEB AmazonPolarityClassification (default) | Classification | ap | 91.30887530384256 |
MTEB AmazonPolarityClassification (default) | Classification | ap_weighted | 91.30887530384256 |
MTEB AmazonPolarityClassification (default) | Classification | f1 | 94.29070662237378 |
MTEB AmazonPolarityClassification (default) | Classification | f1_weighted | 94.29070662237378 |
MTEB AmazonPolarityClassification (default) | Classification | main_score | 94.29605000000001 |
MTEB ArguAna (default) | Retrieval | main_score | 53.227999999999994 |
MTEB ArguAna (default) | Retrieval | map_at_1 | 27.595999999999997 |
MTEB ArguAna (default) | Retrieval | map_at_10 | 43.756 |
MTEB ArguAna (default) | Retrieval | map_at_100 | 44.674 |
MTEB ArguAna (default) | Retrieval | map_at_1000 | 44.675 |
MTEB ArguAna (default) | Retrieval | map_at_20 | 44.511 |
MTEB ArguAna (default) | Retrieval | map_at_3 | 38.312000000000005 |
MTEB ArguAna (default) | Retrieval | map_at_5 | 41.271 |
MTEB ArguAna (default) | Retrieval | mrr_at_1 | 27.951635846372692 |
MTEB ArguAna (default) | Retrieval | mrr_at_10 | 43.8683138025244 |
MTEB ArguAna (default) | Retrieval | mrr_at_100 | 44.79916793634115 |
MTEB ArguAna (default) | Retrieval | mrr_at_1000 | 44.800641832434614 |
MTEB ArguAna (default) | Retrieval | mrr_at_20 | 44.63636850959653 |
MTEB ArguAna (default) | Retrieval | mrr_at_3 | 38.383119962067305 |
MTEB ArguAna (default) | Retrieval | mrr_at_5 | 41.41299193930774 |
MTEB ArguAna (default) | Retrieval | nauc_map_at_1000_diff1 | 6.936710279308449 |
MTEB ArguAna (default) | Retrieval | nauc_map_at_1000_max | -16.426102328143827 |
MTEB ArguAna (default) | Retrieval | nauc_map_at_1000_std | -18.408713623781154 |
MTEB ArguAna (default) | Retrieval | nauc_map_at_100_diff1 | 6.936900325690782 |
MTEB ArguAna (default) | Retrieval | nauc_map_at_100_max | -16.424599448813982 |
MTEB ArguAna (default) | Retrieval | nauc_map_at_100_std | -18.41002427519262 |
MTEB ArguAna (default) | Retrieval | nauc_map_at_10_diff1 | 6.686089466049945 |
MTEB ArguAna (default) | Retrieval | nauc_map_at_10_max | -16.277854443721235 |
MTEB ArguAna (default) | Retrieval | nauc_map_at_10_std | -18.533367246025183 |
MTEB ArguAna (default) | Retrieval | nauc_map_at_1_diff1 | 10.048892770421086 |
MTEB ArguAna (default) | Retrieval | nauc_map_at_1_max | -18.88033774058785 |
MTEB ArguAna (default) | Retrieval | nauc_map_at_1_std | -18.950654138263662 |
MTEB ArguAna (default) | Retrieval | nauc_map_at_20_diff1 | 6.896257398324564 |
MTEB ArguAna (default) | Retrieval | nauc_map_at_20_max | -16.28720522758851 |
MTEB ArguAna (default) | Retrieval | nauc_map_at_20_std | -18.463554340157874 |
MTEB ArguAna (default) | Retrieval | nauc_map_at_3_diff1 | 6.996349008138944 |
MTEB ArguAna (default) | Retrieval | nauc_map_at_3_max | -16.895326699141894 |
MTEB ArguAna (default) | Retrieval | nauc_map_at_3_std | -18.550696483491105 |
MTEB ArguAna (default) | Retrieval | nauc_map_at_5_diff1 | 6.652257808997529 |
MTEB ArguAna (default) | Retrieval | nauc_map_at_5_max | -16.616340120756664 |
MTEB ArguAna (default) | Retrieval | nauc_map_at_5_std | -18.750380766744815 |
MTEB ArguAna (default) | Retrieval | nauc_mrr_at_1000_diff1 | 5.675242976111991 |
MTEB ArguAna (default) | Retrieval | nauc_mrr_at_1000_max | -16.992812047837067 |
MTEB ArguAna (default) | Retrieval | nauc_mrr_at_1000_std | -18.32929497132872 |
MTEB ArguAna (default) | Retrieval | nauc_mrr_at_100_diff1 | 5.6754937777142835 |
MTEB ArguAna (default) | Retrieval | nauc_mrr_at_100_max | -16.991287123334946 |
MTEB ArguAna (default) | Retrieval | nauc_mrr_at_100_std | -18.330604638796043 |
MTEB ArguAna (default) | Retrieval | nauc_mrr_at_10_diff1 | 5.392768177635316 |
MTEB ArguAna (default) | Retrieval | nauc_mrr_at_10_max | -16.891663162548255 |
MTEB ArguAna (default) | Retrieval | nauc_mrr_at_10_std | -18.471864534496945 |
MTEB ArguAna (default) | Retrieval | nauc_mrr_at_1_diff1 | 8.923777873913467 |
MTEB ArguAna (default) | Retrieval | nauc_mrr_at_1_max | -18.81665268664494 |
MTEB ArguAna (default) | Retrieval | nauc_mrr_at_1_std | -18.819665466571674 |
MTEB ArguAna (default) | Retrieval | nauc_mrr_at_20_diff1 | 5.641752338928701 |
MTEB ArguAna (default) | Retrieval | nauc_mrr_at_20_max | -16.85136568990159 |
MTEB ArguAna (default) | Retrieval | nauc_mrr_at_20_std | -18.384362648232546 |
MTEB ArguAna (default) | Retrieval | nauc_mrr_at_3_diff1 | 5.524316132813568 |
MTEB ArguAna (default) | Retrieval | nauc_mrr_at_3_max | -17.723568343459988 |
MTEB ArguAna (default) | Retrieval | nauc_mrr_at_3_std | -18.372688451025656 |
MTEB ArguAna (default) | Retrieval | nauc_mrr_at_5_diff1 | 5.414405183203325 |
MTEB ArguAna (default) | Retrieval | nauc_mrr_at_5_max | -17.288127460794154 |
MTEB ArguAna (default) | Retrieval | nauc_mrr_at_5_std | -18.71123050851349 |
MTEB ArguAna (default) | Retrieval | nauc_ndcg_at_1000_diff1 | 6.487802962417493 |
MTEB ArguAna (default) | Retrieval | nauc_ndcg_at_1000_max | -15.76159401306176 |
MTEB ArguAna (default) | Retrieval | nauc_ndcg_at_1000_std | -18.15838595665605 |
MTEB ArguAna (default) | Retrieval | nauc_ndcg_at_100_diff1 | 6.48323468898899 |
MTEB ArguAna (default) | Retrieval | nauc_ndcg_at_100_max | -15.728467477722477 |
MTEB ArguAna (default) | Retrieval | nauc_ndcg_at_100_std | -18.197384218078643 |
MTEB ArguAna (default) | Retrieval | nauc_ndcg_at_10_diff1 | 5.423448018411026 |
MTEB ArguAna (default) | Retrieval | nauc_ndcg_at_10_max | -14.673502378215453 |
MTEB ArguAna (default) | Retrieval | nauc_ndcg_at_10_std | -18.837931889895316 |
MTEB ArguAna (default) | Retrieval | nauc_ndcg_at_1_diff1 | 10.048892770421086 |
MTEB ArguAna (default) | Retrieval | nauc_ndcg_at_1_max | -18.88033774058785 |
MTEB ArguAna (default) | Retrieval | nauc_ndcg_at_1_std | -18.950654138263662 |
MTEB ArguAna (default) | Retrieval | nauc_ndcg_at_20_diff1 | 6.369954849420038 |
MTEB ArguAna (default) | Retrieval | nauc_ndcg_at_20_max | -14.443991776264713 |
MTEB ArguAna (default) | Retrieval | nauc_ndcg_at_20_std | -18.416264332865836 |
MTEB ArguAna (default) | Retrieval | nauc_ndcg_at_3_diff1 | 6.224331563078568 |
MTEB ArguAna (default) | Retrieval | nauc_ndcg_at_3_max | -16.183370694913553 |
MTEB ArguAna (default) | Retrieval | nauc_ndcg_at_3_std | -18.559481650690337 |
MTEB ArguAna (default) | Retrieval | nauc_ndcg_at_5_diff1 | 5.659342042143408 |
MTEB ArguAna (default) | Retrieval | nauc_ndcg_at_5_max | -15.510631438356693 |
MTEB ArguAna (default) | Retrieval | nauc_ndcg_at_5_std | -18.909647623269873 |
MTEB ArguAna (default) | Retrieval | nauc_precision_at_1000_diff1 | -45.740924328524436 |
MTEB ArguAna (default) | Retrieval | nauc_precision_at_1000_max | -4.436745319184523 |
MTEB ArguAna (default) | Retrieval | nauc_precision_at_1000_std | 57.94428979357973 |
MTEB ArguAna (default) | Retrieval | nauc_precision_at_100_diff1 | -23.751971897164438 |
MTEB ArguAna (default) | Retrieval | nauc_precision_at_100_max | 0.5109176204949021 |
MTEB ArguAna (default) | Retrieval | nauc_precision_at_100_std | 14.133130213074722 |
MTEB ArguAna (default) | Retrieval | nauc_precision_at_10_diff1 | -2.2741922400170953 |
MTEB ArguAna (default) | Retrieval | nauc_precision_at_10_max | -4.695134136659869 |
MTEB ArguAna (default) | Retrieval | nauc_precision_at_10_std | -21.566024184206757 |
MTEB ArguAna (default) | Retrieval | nauc_precision_at_1_diff1 | 10.048892770421086 |
MTEB ArguAna (default) | Retrieval | nauc_precision_at_1_max | -18.88033774058785 |
MTEB ArguAna (default) | Retrieval | nauc_precision_at_1_std | -18.950654138263662 |
MTEB ArguAna (default) | Retrieval | nauc_precision_at_20_diff1 | 2.366832261816588 |
MTEB ArguAna (default) | Retrieval | nauc_precision_at_20_max | 17.078759245976265 |
MTEB ArguAna (default) | Retrieval | nauc_precision_at_20_std | -17.573684824976628 |
MTEB ArguAna (default) | Retrieval | nauc_precision_at_3_diff1 | 4.062538060385958 |
MTEB ArguAna (default) | Retrieval | nauc_precision_at_3_max | -14.10949953336873 |
MTEB ArguAna (default) | Retrieval | nauc_precision_at_3_std | -18.626114079282416 |
MTEB ArguAna (default) | Retrieval | nauc_precision_at_5_diff1 | 2.425834990396102 |
MTEB ArguAna (default) | Retrieval | nauc_precision_at_5_max | -11.600278541101094 |
MTEB ArguAna (default) | Retrieval | nauc_precision_at_5_std | -19.53326796179894 |
MTEB ArguAna (default) | Retrieval | nauc_recall_at_1000_diff1 | -45.740924328527974 |
MTEB ArguAna (default) | Retrieval | nauc_recall_at_1000_max | -4.4367453191877555 |
MTEB ArguAna (default) | Retrieval | nauc_recall_at_1000_std | 57.9442897935769 |
MTEB ArguAna (default) | Retrieval | nauc_recall_at_100_diff1 | -23.751971897160466 |
MTEB ArguAna (default) | Retrieval | nauc_recall_at_100_max | 0.5109176204928446 |
MTEB ArguAna (default) | Retrieval | nauc_recall_at_100_std | 14.133130213071956 |
MTEB ArguAna (default) | Retrieval | nauc_recall_at_10_diff1 | -2.2741922400170527 |
MTEB ArguAna (default) | Retrieval | nauc_recall_at_10_max | -4.695134136659742 |
MTEB ArguAna (default) | Retrieval | nauc_recall_at_10_std | -21.566024184206647 |
MTEB ArguAna (default) | Retrieval | nauc_recall_at_1_diff1 | 10.048892770421086 |
MTEB ArguAna (default) | Retrieval | nauc_recall_at_1_max | -18.88033774058785 |
MTEB ArguAna (default) | Retrieval | nauc_recall_at_1_std | -18.950654138263662 |
MTEB ArguAna (default) | Retrieval | nauc_recall_at_20_diff1 | 2.366832261816872 |
MTEB ArguAna (default) | Retrieval | nauc_recall_at_20_max | 17.078759245976432 |
MTEB ArguAna (default) | Retrieval | nauc_recall_at_20_std | -17.57368482497646 |
MTEB ArguAna (default) | Retrieval | nauc_recall_at_3_diff1 | 4.0625380603860055 |
MTEB ArguAna (default) | Retrieval | nauc_recall_at_3_max | -14.10949953336872 |
MTEB ArguAna (default) | Retrieval | nauc_recall_at_3_std | -18.626114079282395 |
MTEB ArguAna (default) | Retrieval | nauc_recall_at_5_diff1 | 2.425834990396135 |
MTEB ArguAna (default) | Retrieval | nauc_recall_at_5_max | -11.60027854110106 |
MTEB ArguAna (default) | Retrieval | nauc_recall_at_5_std | -19.533267961798924 |
MTEB ArguAna (default) | Retrieval | ndcg_at_1 | 27.595999999999997 |
MTEB ArguAna (default) | Retrieval | ndcg_at_10 | 53.227999999999994 |
MTEB ArguAna (default) | Retrieval | ndcg_at_100 | 56.931 |
MTEB ArguAna (default) | Retrieval | ndcg_at_1000 | 56.967999999999996 |
MTEB ArguAna (default) | Retrieval | ndcg_at_20 | 55.921 |
MTEB ArguAna (default) | Retrieval | ndcg_at_3 | 41.908 |
MTEB ArguAna (default) | Retrieval | ndcg_at_5 | 47.285 |
MTEB ArguAna (default) | Retrieval | precision_at_1 | 27.595999999999997 |
MTEB ArguAna (default) | Retrieval | precision_at_10 | 8.371 |
MTEB ArguAna (default) | Retrieval | precision_at_100 | 0.9939999999999999 |
MTEB ArguAna (default) | Retrieval | precision_at_1000 | 0.1 |
MTEB ArguAna (default) | Retrieval | precision_at_20 | 4.712000000000001 |
MTEB ArguAna (default) | Retrieval | precision_at_3 | 17.449 |
MTEB ArguAna (default) | Retrieval | precision_at_5 | 13.100999999999999 |
MTEB ArguAna (default) | Retrieval | recall_at_1 | 27.595999999999997 |
MTEB ArguAna (default) | Retrieval | recall_at_10 | 83.71300000000001 |
MTEB ArguAna (default) | Retrieval | recall_at_100 | 99.36 |
MTEB ArguAna (default) | Retrieval | recall_at_1000 | 99.644 |
MTEB ArguAna (default) | Retrieval | recall_at_20 | 94.23899999999999 |
MTEB ArguAna (default) | Retrieval | recall_at_3 | 52.347 |
MTEB ArguAna (default) | Retrieval | recall_at_5 | 65.505 |
MTEB AskUbuntuDupQuestions (default) | Reranking | main_score | 58.18725222465893 |
MTEB AskUbuntuDupQuestions (default) | Reranking | map | 58.18725222465893 |
MTEB AskUbuntuDupQuestions (default) | Reranking | mrr | 69.84335839598998 |
MTEB AskUbuntuDupQuestions (default) | Reranking | nAUC_map_diff1 | 19.11598989756231 |
MTEB AskUbuntuDupQuestions (default) | Reranking | nAUC_map_max | 15.695053858587466 |
MTEB AskUbuntuDupQuestions (default) | Reranking | nAUC_map_std | 22.147773436080342 |
MTEB AskUbuntuDupQuestions (default) | Reranking | nAUC_mrr_diff1 | 25.38427130339339 |
MTEB AskUbuntuDupQuestions (default) | Reranking | nAUC_mrr_max | 24.2962940173052 |
MTEB AskUbuntuDupQuestions (default) | Reranking | nAUC_mrr_std | 20.846599304343176 |
MTEB BIOSSES (default) | STS | cosine_pearson | 87.40814966131607 |
MTEB BIOSSES (default) | STS | cosine_spearman | 84.21758160533057 |
MTEB BIOSSES (default) | STS | euclidean_pearson | 86.68087011664755 |
MTEB BIOSSES (default) | STS | euclidean_spearman | 84.21758160533057 |
MTEB BIOSSES (default) | STS | main_score | 84.21758160533057 |
MTEB BIOSSES (default) | STS | manhattan_pearson | 86.8885717540405 |
MTEB BIOSSES (default) | STS | manhattan_spearman | 84.69409848718736 |
MTEB BIOSSES (default) | STS | pearson | 87.40814966131607 |
MTEB BIOSSES (default) | STS | spearman | 84.21758160533057 |
MTEB Banking77Classification (default) | Classification | accuracy | 87.78571428571429 |
MTEB Banking77Classification (default) | Classification | f1 | 87.55183393575304 |
MTEB Banking77Classification (default) | Classification | f1_weighted | 87.55183393575307 |
MTEB Banking77Classification (default) | Classification | main_score | 87.78571428571429 |
MTEB CEDRClassification (default) | Classification | accuracy | 59.6894792773645 |
MTEB CEDRClassification (default) | Classification | f1 | 59.07371458842751 |
MTEB CEDRClassification (default) | Classification | lrap | 84.46838469713137 |
MTEB CEDRClassification (default) | Classification | main_score | 59 |
Jina Embeddings V3
Jina Embeddings V3 is a multilingual sentence embedding model supporting over 100 languages, specializing in sentence similarity and feature extraction tasks.
Text Embedding
Transformers Supports Multiple Languages

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
A cross-encoder model trained on the MS Marco passage ranking task for query-passage relevance scoring in information retrieval
Text Embedding English
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
A sparse retrieval model based on distillation technology, optimized for OpenSearch, supporting inference-free document encoding with improved search relevance and efficiency over V1
Text Embedding
Transformers English

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
A biomedical entity representation model based on PubMedBERT, optimized for semantic relation capture through self-aligned pre-training
Text Embedding English
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large is a powerful sentence transformer model focused on sentence similarity and text embedding tasks, excelling in multiple benchmark tests.
Text Embedding English
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 is an English sentence transformer model focused on sentence similarity tasks, excelling in multiple text embedding benchmarks.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base is a multilingual sentence embedding model supporting over 50 languages, suitable for tasks like sentence similarity calculation.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT is a chemical language model designed to achieve fully machine-driven ultrafast polymer informatics. It maps PSMILES strings into 600-dimensional dense fingerprints to numerically represent polymer chemical structures.
Text Embedding
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
A sentence embedding model based on Turkish BERT, optimized for semantic similarity tasks
Text Embedding
Transformers Other

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
A text embedding model fine-tuned based on BAAI/bge-small-en-v1.5, trained with the MEDI dataset and MTEB classification task datasets, optimized for query encoding in retrieval tasks.
Text Embedding
Safetensors English
G
avsolatorio
945.68k
29
Featured Recommended AI Models