Nl Core News Md
CPU-optimized Dutch processing pipeline including tokenization, POS tagging, dependency parsing, named entity recognition, etc.
Downloads 15
Release Time : 3/2/2022
Model Overview
This is a medium-sized Dutch language processing model developed based on the spaCy framework, suitable for various Dutch text processing tasks. The model includes a complete natural language processing pipeline capable of performing tasks such as tokenization, POS tagging, dependency parsing, and named entity recognition.
Model Features
CPU Optimization
Specially optimized for CPU usage, suitable for deployment in environments without GPUs.
Comprehensive NLP Pipeline
Includes a complete set of natural language processing components, from tokenization to named entity recognition.
Pretrained Vectors
Includes 20,000 300-dimensional pretrained word vectors to enhance semantic understanding.
Model Capabilities
Dutch Tokenization
POS Tagging
Dependency Parsing
Named Entity Recognition
Lemmatization
Sentence Segmentation
Morphological Analysis
Use Cases
Text Analysis
Dutch Text Preprocessing
Provides preprocessing functions for Dutch text analysis tasks.
Accuracy up to 96.39% (UPOS POS Tagging)
Information Extraction
Extracts named entities (people, places, organizations, etc.) from Dutch text.
F1-score 75.28%
Linguistic Research
Dutch Grammar Analysis
Analyzes the grammatical structure and dependencies of Dutch sentences.
Dependency Parsing UAS 86.82%, LAS 82.13%
🚀 nl_core_news_md
This is a Dutch language processing pipeline optimized for CPU, offering high - performance token - classification tasks.
📚 Documentation
Details: https://spacy.io/models/nl#nl_core_news_md
This is a Dutch pipeline optimized for CPU. Components include tok2vec, morphologizer, tagger, parser, lemmatizer (trainable_lemmatizer), senter, ner.
Property | Details |
---|---|
Name | nl_core_news_md |
Version | 3.7.0 |
spaCy | >=3.7.0,<3.8.0 |
Default Pipeline | tok2vec , morphologizer , tagger , parser , lemmatizer , attribute_ruler , ner |
Components | tok2vec , morphologizer , tagger , parser , lemmatizer , senter , attribute_ruler , ner |
Vectors | 500000 keys, 20000 unique vectors (300 dimensions) |
Sources | UD Dutch LassySmall v2.8 (Bouma, Gosse; van Noord, Gertjan) Dutch NER Annotations for UD LassySmall (NLP Town) UD Dutch Alpino v2.8 (Zeman, Daniel; Žabokrtský, Zdeněk; Bouma, Gosse; van Noord, Gertjan) Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia) (Explosion) |
License | CC BY - SA 4.0 |
Author | Explosion |
Model Performance
Task | Metric | Value |
---|---|---|
NER | NER Precision | 0.7668579627 |
NER | NER Recall | 0.7392807746 |
NER | NER F Score | 0.7528169014 |
TAG | TAG (XPOS) Accuracy | 0.9498800436 |
POS | POS (UPOS) Accuracy | 0.9639258451 |
MORPH | Morph (UFeats) Accuracy | 0.9606282037 |
LEMMA | Lemma Accuracy | 0.9542272717 |
UNLABELED_DEPENDENCIES | Unlabeled Attachment Score (UAS) | 0.8682209833 |
LABELED_DEPENDENCIES | Labeled Attachment Score (LAS) | 0.8213380639 |
SENTS | Sentences F - Score | 0.8684303351 |
Label Scheme
View label scheme (323 labels for 4 components)
Component | Labels |
---|---|
morphologizer |
POS=PRON|Person=3|PronType=Dem , Number=Sing|POS=AUX|Tense=Pres|VerbForm=Fin , POS=ADV , POS=VERB|VerbForm=Part , POS=PUNCT , Number=Sing|POS=AUX|Tense=Past|VerbForm=Fin , POS=ADP , POS=NUM , Number=Plur|POS=NOUN , POS=VERB|VerbForm=Inf , POS=SCONJ , Definite=Def|POS=DET , Gender=Com|Number=Sing|POS=NOUN , Number=Sing|POS=VERB|Tense=Pres|VerbForm=Fin , Degree=Pos|POS=ADJ , Gender=Neut|Number=Sing|POS=PROPN , Gender=Com|Number=Sing|POS=PROPN , POS=AUX|VerbForm=Inf , Number=Sing|POS=VERB|Tense=Past|VerbForm=Fin , POS=DET , Gender=Neut|Number=Sing|POS=NOUN , POS=PRON|Person=3|PronType=Prs , POS=CCONJ , Number=Plur|POS=VERB|Tense=Pres|VerbForm=Fin , POS=PRON|Person=3|PronType=Ind , Degree=Cmp|POS=ADJ , Case=Nom|POS=PRON|Person=1|PronType=Prs , Definite=Ind|POS=DET , Case=Nom|POS=PRON|Person=3|PronType=Prs , POS=PRON|Person=3|Poss=Yes|PronType=Prs , Number=Plur|POS=AUX|Tense=Pres|VerbForm=Fin , POS=PRON|PronType=Rel , Case=Acc|POS=PRON|Person=1|PronType=Prs , Number=Plur|POS=VERB|Tense=Past|VerbForm=Fin , Gender=Com,Neut|Number=Sing|POS=NOUN , Case=Acc|POS=PRON|Person=3|PronType=Prs|Reflex=Yes , Case=Acc|POS=PRON|Person=3|PronType=Prs , POS=PROPN , POS=PRON|PronType=Ind , POS=PRON|Person=3|PronType=Int , Case=Acc|POS=PRON|PronType=Rcp , Number=Plur|POS=AUX|Tense=Past|VerbForm=Fin , Number=Sing|POS=NOUN , POS=PRON|Person=1|Poss=Yes|PronType=Prs , POS=SYM , Abbr=Yes|POS=X , Gender=Com,Neut|Number=Sing|POS=PROPN , Degree=Sup|POS=ADJ , POS=ADJ , Number=Sing|POS=PROPN , POS=PRON|PronType=Dem , POS=AUX|VerbForm=Part , POS=SPACE , POS=PRON|Person=3|PronType=Rel , Number=Plur|POS=PROPN , POS=PRON|Person=2|Poss=Yes|PronType=Prs , Case=Dat|POS=PRON|PronType=Dem , Case=Nom|POS=PRON|Person=2|PronType=Prs , POS=INTJ , Case=Acc|POS=PRON|Person=2|PronType=Prs , Case=Gen|POS=PRON|Person=3|Poss=Yes|PronType=Prs , POS=PRON|PronType=Int , POS=PRON|Person=2|PronType=Prs , POS=PRON|Person=3 , Case=Gen|POS=PRON|Person=2|PronType=Prs , POS=X |
tagger |
ADJ|nom|basis|met-e|mv-n , ADJ|nom|basis|met-e|zonder-n|bijz , ADJ|nom|basis|met-e|zonder-n|stan , ADJ|nom|basis|zonder|mv-n , ADJ|nom|basis|zonder|zonder-n , ADJ|nom|comp|met-e|mv-n , ADJ|nom|comp|met-e|zonder-n|stan , ADJ|nom|sup|met-e|mv-n , ADJ|nom|sup|met-e|zonder-n|bijz , ADJ|nom|sup|met-e|zonder-n|stan , ADJ|nom|sup|zonder|zonder-n , ADJ|postnom|basis|met-s , ADJ|postnom|basis|zonder , ADJ|postnom|comp|met-s , ADJ|prenom|basis|met-e|bijz , ADJ|prenom|basis|met-e|stan , ADJ|prenom|basis|zonder , ADJ|prenom|comp|met-e|stan , ADJ|prenom|comp|zonder , ADJ|prenom|sup|met-e|stan , ADJ|prenom|sup|zonder , ADJ|vrij|basis|zonder , ADJ|vrij|comp|zonder , ADJ|vrij|dim|zonder , ADJ|vrij|sup|zonder , BW , LET , LID|bep|dat|evmo , LID|bep|gen|evmo , LID|bep|gen|rest3 , LID|bep|stan|evon , LID|bep|stan|rest , LID|onbep|stan|agr , N|eigen|ev|basis|gen , N|eigen|ev|basis|genus|stan , N|eigen|ev|basis|onz|stan , N|eigen|ev|basis|zijd|stan , N|eigen|ev|dim|onz|stan , N|eigen|mv|basis , N|soort|ev|basis|dat , N|soort|ev|basis|gen , N|soort|ev|basis|genus|stan , N|soort|ev|basis|onz|stan , N|soort|ev|basis|zijd|stan , N|soort|ev|dim|onz|stan , N|soort|mv|basis , N|soort|mv|dim , SPEC|afgebr , SPEC|afk , SPEC|deeleigen , SPEC|enof , SPEC|meta , SPEC|symb , SPEC|vreemd , TSW , TW|hoofd|nom|mv-n|basis , TW|hoofd|nom|mv-n|dim , TW|hoofd|nom|zonder-n|basis , TW|hoofd|nom|zonder-n|dim , TW|hoofd|prenom|stan , TW|hoofd|vrij , TW|rang|nom|mv-n , TW|rang|nom|zonder-n , TW|rang|prenom|stan , VG|neven , VG|onder , VNW|aanw|adv-pron|obl|vol|3o|getal , VNW|aanw|adv-pron|stan|red|3|getal , VNW|aanw|det|dat|nom|met-e|zonder-n , VNW|aanw|det|dat|prenom|met-e|evmo , VNW|aanw|det|gen|prenom|met-e|rest3 , VNW|aanw|det|stan|nom|met-e|mv-n , VNW|aanw|det|stan|nom|met-e|zonder-n , VNW|aanw|det|stan|prenom|met-e|rest , VNW|aanw|det|stan|prenom|zonder|agr , VNW|aanw|det|stan|prenom|zonder|evon , VNW|aanw|det|stan|prenom|zonder|rest , VNW|aanw|det|stan|vrij|zonder , VNW|aanw|pron|gen|vol|3m|ev , VNW|aanw|pron|stan|vol|3o|ev , VNW|aanw|pron|stan|vol|3|getal , VNW|betr|det|stan|nom|met-e|zonder-n , VNW|betr|det|stan|nom|zonder|zonder-n , VNW|betr|pron|stan|vol|3|ev , VNW|betr|pron|stan|vol|persoon|getal , VNW|bez|det|gen|vol|3|ev|prenom|met-e|rest3 , VNW|bez|det|stan|nadr|2v|mv|prenom|zonder|agr , VNW|bez|det|stan|red|1|ev|prenom|zonder|agr , VNW|bez|det|stan|red|2v|ev|prenom|zonder|agr , VNW|bez|det|stan|red|3|ev|prenom|zonder|agr , VNW|bez|det|stan|vol|1|ev|prenom|met-e|rest , VNW|bez|det|stan|vol|1|ev|prenom|zonder|agr , VNW|bez|det|stan|vol|1|mv|prenom|met-e|rest , VNW|bez|det|stan|vol|1|mv|prenom|zonder|evon , VNW|bez|det|stan|vol|2v|ev|prenom|zonder|agr , VNW|bez|det|stan|vol|2|getal|prenom|zonder|agr , VNW|bez|det|stan|vol|3m|ev|nom|met-e|zonder-n , VNW|bez|det|stan|vol|3m|ev|prenom|met-e|rest , VNW|bez|det|stan|vol|3p|mv|prenom|met-e|rest , VNW|bez|det|stan|vol|3v|ev|nom|met-e|zonder-n , VNW|bez|det|stan|vol|3v|ev|prenom|met-e|rest , VNW|bez|det|stan|vol|3|ev|prenom|zonder|agr , VNW|bez|det|stan|vol|3|mv|prenom|zonder|agr , VNW|excl|pron|stan|vol|3|getal , VNW|onbep|adv-pron|gen|red|3|getal , VNW|onbep|adv-pron|obl|vol|3o|getal , VNW|onbep|det|stan|nom|met-e|mv-n , VNW|onbep|det|stan|nom|met-e|zonder-n , VNW|onbep|det|stan|nom|zonder|zonder-n , VNW|onbep|det|stan|prenom|met-e|agr , VNW|onbep|det|stan|prenom|met-e|evz , VNW|onbep|det|stan|prenom|met-e|mv , VNW|onbep|det|stan|prenom|met-e|rest , VNW|onbep|det|stan|prenom|zonder|agr , VNW|onbep|det|stan|prenom|zonder|evon , VNW|onbep|det|stan|vrij|zonder , VNW|onbep|grad|gen|nom|met-e|mv-n|basis , VNW|onbep|grad|stan|nom|met-e|mv-n|basis , VNW|onbep|grad|stan|nom|met-e|mv-n|sup , VNW|onbep|grad|stan|nom|met-e|zonder-n|basis , VNW|onbep|grad|stan|nom|met-e|zonder-n|sup , VNW|onbep|grad|stan|prenom|met-e|agr|basis , VNW|onbep|grad|stan|prenom|met-e|agr|comp , VNW|onbep|grad|stan|prenom|met-e|agr|sup , VNW|onbep|grad|stan|prenom|met-e|mv|basis , VNW|onbep|grad|stan|prenom|zonder|agr|basis , VNW|onbep|grad|stan|prenom|zonder|agr|comp , VNW|onbep|grad|stan|vrij|zonder|basis , VNW|onbep|grad|stan|vrij|zonder|comp , VNW|onbep|grad|stan|vrij|zonder|sup , VNW|onbep|pron|gen|vol|3p|ev , VNW|onbep|pron|stan|vol|3o|ev , VNW|onbep|pron|stan|vol|3p|ev , VNW|pers|pron|gen|vol|2|getal , VNW|pers|pron|nomin|nadr|3m|ev|masc , VNW|pers|pron|nomin|nadr|3v|ev|fem , VNW|pers|pron|nomin|red|1|mv , VNW|pers|pron|nomin|red|2v|ev , VNW|pers|pron|nomin|red|2|getal , VNW|pers|pron|nomin|red|3p|ev|masc , VNW|pers|pron|nomin|red|3|ev|masc , VNW|pers|pron|nomin|vol|1|ev , VNW|pers|pron|nomin|vol|1|mv , VNW|pers|pron|nomin|vol|2b|getal , VNW|pers|pron|nomin|vol|2v|ev , VNW|pers|pron|nomin|vol|2|getal , VNW|pers|pron|nomin|vol|3p|mv , VNW|pers|pron|nomin|vol|3v|ev|fem , VNW|pers|pron|nomin|vol|3|ev|masc , VNW|pers|pron|obl|nadr|3m|ev|masc , VNW|pers|pron|obl|red|3|ev|masc , VNW|pers|pron|obl|vol|2v|ev , VNW|pers|pron|obl|vol|3p|mv , VNW|pers|pron|obl|vol|3|ev|masc , VNW|pers|pron|obl|vol|3|getal|fem , VNW|pers|pron|stan|nadr|2v|mv , VNW|pers|pron|stan|red|3|ev|fem , VNW|pers|pron|stan|red|3|ev|onz , VNW|pers|pron|stan|red|3|mv , VNW|pr|pron|obl|nadr|1|ev , VNW|pr|pron|obl|nadr|2v|getal , VNW|pr|pron|obl|nadr|2|getal , VNW|pr|pron|obl|red|1|ev , VNW|pr|pron|obl|red|2v|getal , VNW|pr|pron|obl|vol|1|ev , VNW|pr|pron|obl|vol|1|mv , VNW|pr|pron|obl|vol|2|getal , VNW|recip|pron|gen|vol|persoon|mv , VNW|recip|pron|obl|vol|persoon|mv , VNW|refl|pron|obl|nadr|3|getal , VNW|refl|pron|obl|red|3|getal , VNW|vb|adv-pron|obl|vol|3o|getal , VNW|vb|det|stan|nom|met-e|zonder-n , VNW|vb|det|stan|prenom|met-e|rest , VNW|vb|det|stan|prenom|zonder|evon , VNW|vb|pron|gen|vol|3m|ev , VNW|vb|pron|gen|vol|3p|mv , VNW|vb|pron|gen|vol|3v|ev , VNW|vb|pron|stan|vol|3o|ev , VNW|vb|pron|stan|vol|3p|getal , VZ|fin , VZ|init , VZ|versm , WW|inf|nom|zonder|zonder-n , WW|inf|prenom|met-e , WW|inf|vrij|zonder , WW|od|nom|met-e|mv-n , WW|od|nom|met-e|zonder-n , WW|od|prenom|met-e , WW|od|prenom|zonder , WW|od|vrij|zonder , WW|pv|conj|ev , WW|pv|tgw|ev , WW|pv|tgw|met-t , WW|pv|tgw|mv , WW|pv|verl|ev , WW|pv|verl|mv , WW|vd|nom|met-e|mv-n , WW|vd|nom|met-e|zonder-n , WW|vd|prenom|met-e , WW|vd|prenom|zonder , WW|vd|vrij|zonder , _SP |
parser |
ROOT , acl , acl:relcl , advcl , advmod , amod , appos , aux , aux:pass , case , cc , ccomp , compound:prt , conj , cop , csubj , dep , det , expl , expl:pv , fixed , flat , iobj , mark , nmod , nmod:poss , nsubj , nsubj:pass , nummod , obj , obl , obl:agent , orphan , parataxis , punct , xcomp |
ner |
CARDINAL , DATE , EVENT , FAC , GPE , LANGUAGE , LAW , LOC , MONEY , NORP , ORDINAL , ORG , PERCENT , PERSON , PRODUCT , QUANTITY , TIME , WORK_OF_ART |
📄 License
This project is licensed under the CC BY - SA 4.0
license.
Indonesian Roberta Base Posp Tagger
MIT
This is a POS tagging model fine-tuned based on the Indonesian RoBERTa model, trained on the indonlu dataset for Indonesian text POS tagging tasks.
Sequence Labeling
Transformers Other

I
w11wo
2.2M
7
Bert Base NER
MIT
BERT fine-tuned named entity recognition model capable of identifying four entity types: Location (LOC), Organization (ORG), Person (PER), and Miscellaneous (MISC)
Sequence Labeling English
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
This model is a sequence labeling model fine-tuned on RoBERTa, designed to identify and remove Protected Health Information (PHI/PII) from medical records.
Sequence Labeling
Transformers Supports Multiple Languages

D
obi
1.1M
33
Ner English Fast
Flair's built-in fast English 4-class named entity recognition model, based on Flair embeddings and LSTM-CRF architecture, achieving an F1 score of 92.92 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
978.01k
24
French Camembert Postag Model
French POS tagging model based on Camembert-base, trained using the free-french-treebank dataset
Sequence Labeling
Transformers French

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
A Spanish named entity recognition model fine-tuned based on the XLM-Roberta-large architecture, with excellent performance on the CoNLL-2002 dataset.
Sequence Labeling
Transformers Spanish

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
Named entity recognition model fine-tuned on Indonesian NER tasks based on NusaBert-v1.3
Sequence Labeling
Transformers Other

N
cahya
759.09k
3
Ner English Large
Flair framework's built-in large English NER model for 4 entity types, utilizing document-level XLM-R embeddings and FLERT technique, achieving an F1 score of 94.36 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
749.04k
44
Punctuate All
MIT
A multilingual punctuation prediction model fine-tuned based on xlm-roberta-base, supporting automatic punctuation completion for 12 European languages
Sequence Labeling
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
Japanese named entity recognition model fine-tuned based on xlm-roberta-base
Sequence Labeling
Transformers Supports Multiple Languages

X
tsmatz
630.71k
25
Featured Recommended AI Models