đ robbert-2022-dutch-sentence-transformers
This is a sentence-transformers model that maps sentences and paragraphs to a 768-dimensional dense vector space. It can be used for tasks such as clustering or semantic search.
đ Quick Start
This model is based on KU Leuven's RobBERT model. It has been fine - tuned on the Paraphrase dataset, which was machine - translated to Dutch. The Paraphrase dataset consists of multiple datasets with pairs of similar texts, like duplicate questions on a forum. The translated data used to train this model has been released on our Huggingface page.
⨠Features
- Pipeline Tag: sentence - similarity
- Tags: sentence - transformers, feature - extraction, sentence - similarity, transformers
- Datasets:
- NetherlandsForensicInstitute/AllNLI - translated - nl
- NetherlandsForensicInstitute/altlex - translated - nl
- NetherlandsForensicInstitute/coco - captions - translated - nl
- NetherlandsForensicInstitute/flickr30k - captions - translated - nl
- NetherlandsForensicInstitute/msmarco - translated - nl
- NetherlandsForensicInstitute/quora - duplicates - translated - nl
- NetherlandsForensicInstitute/sentence - compression - translated - nl
- NetherlandsForensicInstitute/simplewiki - translated - nl
- NetherlandsForensicInstitute/stackexchange - duplicate - questions - translated - nl
- NetherlandsForensicInstitute/wiki - atomic - edits - translated - nl
- Base Model: DTAI - KULeuven/robbert - 2022 - dutch - base
đĻ Installation
Using this model becomes easy when you have sentence - transformers installed:
pip install -U sentence-transformers
đģ Usage Examples
Basic Usage
Using Sentence - Transformers
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers')
embeddings = model.encode(sentences)
print(embeddings)
Using HuggingFace Transformers
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers')
model = AutoModel.from_pretrained('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
đ§ Technical Details
Training
The model was trained with the following parameters:
DataLoader:
MultiDatasetDataLoader.MultiDatasetDataLoader
of length 414262 with parameters:
{'batch_size': 1}
Loss:
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
with parameters:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
Parameters of the fit() - Method:
{
"epochs": 1,
"evaluation_steps": 50000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 500,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
đ License
This model is licensed under the apache - 2.0
license.
đ Documentation
In order to cite this model, click on the three dots in the top right of this page and click "Cite this model".
Property |
Details |
Pipeline Tag |
sentence - similarity |
Tags |
sentence - transformers, feature - extraction, sentence - similarity, transformers |
Datasets |
NetherlandsForensicInstitute/AllNLI - translated - nl, NetherlandsForensicInstitute/altlex - translated - nl, NetherlandsForensicInstitute/coco - captions - translated - nl, NetherlandsForensicInstitute/flickr30k - captions - translated - nl, NetherlandsForensicInstitute/msmarco - translated - nl, NetherlandsForensicInstitute/quora - duplicates - translated - nl, NetherlandsForensicInstitute/sentence - compression - translated - nl, NetherlandsForensicInstitute/simplewiki - translated - nl, NetherlandsForensicInstitute/stackexchange - duplicate - questions - translated - nl, NetherlandsForensicInstitute/wiki - atomic - edits - translated - nl |
Base Model |
DTAI - KULeuven/robbert - 2022 - dutch - base |
License |
apache - 2.0 |