🚀 robbert-2022-dutch-sentence-transformers
這是一個 sentence-transformers 模型,它能將句子和段落映射到一個 768 維的密集向量空間,可用於聚類或語義搜索等任務。該模型基於 KU Leuven 的 RobBERT 模型,並在 Paraphrase 數據集 上進行了微調,此數據集已被機器翻譯成荷蘭語。Paraphrase 數據集由多個包含相似文本對的數據集組成,例如論壇上的重複問題。我們已在 Huggingface 頁面上發佈了用於訓練該模型的翻譯後數據。
🚀 快速開始
本模型可用於將句子和段落映射到 768 維的密集向量空間,適用於聚類、語義搜索等任務。
✨ 主要特性
📦 安裝指南
若要使用該模型,需安裝 sentence-transformers:
pip install -U sentence-transformers
💻 使用示例
基礎用法(Sentence-Transformers)
安裝 sentence-transformers 後,可按如下方式使用該模型:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers')
embeddings = model.encode(sentences)
print(embeddings)
高級用法(HuggingFace Transformers)
若未安裝 sentence-transformers,可按以下步驟使用該模型:首先將輸入傳遞給變壓器模型,然後對上下文詞嵌入應用正確的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers')
model = AutoModel.from_pretrained('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
🔧 技術細節
訓練參數
該模型使用以下參數進行訓練:
數據加載器(DataLoader):
MultiDatasetDataLoader.MultiDatasetDataLoader
,長度為 414262,參數如下:
{'batch_size': 1}
損失函數(Loss):
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
,參數如下:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
fit()
方法的參數:
{
"epochs": 1,
"evaluation_steps": 50000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 500,
"weight_decay": 0.01
}
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
📄 許可證
本模型採用 apache-2.0
許可證。
🔍 其他信息
數據集
本模型在以下數據集上進行訓練:
- NetherlandsForensicInstitute/AllNLI-translated-nl
- NetherlandsForensicInstitute/altlex-translated-nl
- NetherlandsForensicInstitute/coco-captions-translated-nl
- NetherlandsForensicInstitute/flickr30k-captions-translated-nl
- NetherlandsForensicInstitute/msmarco-translated-nl
- NetherlandsForensicInstitute/quora-duplicates-translated-nl
- NetherlandsForensicInstitute/sentence-compression-translated-nl
- NetherlandsForensicInstitute/simplewiki-translated-nl
- NetherlandsForensicInstitute/stackexchange-duplicate-questions-translated-nl
- NetherlandsForensicInstitute/wiki-atomic-edits-translated-nl
引用與作者
若要引用此模型,請點擊頁面右上角的三個點,然後點擊“引用此模型”。