Rubert Tiny Turbo
R
Rubert Tiny Turbo
Developed by sergeyzh
A fine-tuned Russian small sentence similarity model based on cointegrated/rubert-tiny2, suitable for feature extraction and sentence transformation tasks
Downloads 93.76k
Release Time : 6/21/2024
Model Overview
This is a lightweight Russian sentence embedding model, specifically optimized for sentence similarity calculation tasks. Fine-tuned based on the rubert-tiny2 architecture, it provides efficient semantic representation capabilities for Russian text processing.
Model Features
Lightweight and efficient
Optimized based on the tiny architecture, reducing computational resource requirements while maintaining performance
Russian language optimization
Specially trained and optimized for Russian text
Sentence embedding
Capable of converting sentences into high-quality semantic vector representations
Model Capabilities
Sentence similarity calculation
Semantic search
Text feature extraction
Russian text processing
Use Cases
Information retrieval
Legal document retrieval
Searching for relevant clauses and cases in legal document libraries
Achieved an NDCG@10 score of 13.624 on the AILAStatutes dataset
News similarity matching
Finding similar news reports
Trained on Gazeta and Lenta-ru datasets
Question answering systems
Question-answer pair matching
Matching questions with the most relevant answers in QA systems
Achieved an MRR score of 3.845 on the ARCChallenge dataset
🚀 sergeyzh/rubert-tiny-turbo
This is a model for sentence similarity tasks, trained on Russian datasets and based on the cointegrated/rubert-tiny2 base model. It provides various performance metrics on the MTEB dataset.
📚 Documentation
General Information
Property | Details |
---|---|
Pipeline Tag | Sentence Similarity |
Tags | Russian, Pretraining, Embeddings, Tiny, Feature Extraction, Sentence Similarity, Sentence Transformers, Transformers, MTEB |
Datasets | IlyaGusev/gazeta, zloelias/lenta-ru |
License | MIT |
Base Model | cointegrated/rubert-tiny2 |
Model Index
- Model Name: sergeyzh/rubert-tiny-turbo
Results on MTEB AILACasedocs (default)
Metric | Value |
---|---|
main_score | 7.432999999999999 |
map_at_1 | 0.604 |
map_at_10 | 3.8989999999999996 |
map_at_100 | 7.89 |
map_at_1000 | 8.417 |
map_at_20 | 5.007000000000001 |
map_at_3 | 2.688 |
map_at_5 | 3.0380000000000003 |
mrr_at_1 | 6.0 |
mrr_at_10 | 11.799999999999999 |
mrr_at_100 | 14.417998426795965 |
mrr_at_1000 | 14.474056627618499 |
mrr_at_20 | 13.017532467532467 |
mrr_at_3 | 10.333333333333334 |
mrr_at_5 | 10.733333333333333 |
nauc_map_at_1000_diff1 | -18.649405381116548 |
nauc_map_at_1000_max | 53.92467833877199 |
nauc_map_at_1000_std | -37.567628121407296 |
nauc_map_at_100_diff1 | -19.053926237591206 |
nauc_map_at_100_max | 53.442907236002725 |
nauc_map_at_100_std | -37.310817568902884 |
nauc_map_at_10_diff1 | -13.464050841785403 |
nauc_map_at_10_max | 48.093886298979946 |
nauc_map_at_10_std | -34.85388157835729 |
nauc_map_at_1_diff1 | -13.741863044507388 |
nauc_map_at_1_max | 88.80266056441289 |
nauc_map_at_1_std | -52.44805080502242 |
nauc_map_at_20_diff1 | -14.561491138058782 |
nauc_map_at_20_max | 48.97477701904 |
nauc_map_at_20_std | -31.218577996781537 |
nauc_map_at_3_diff1 | -15.370170931276068 |
nauc_map_at_3_max | 53.443631887225486 |
nauc_map_at_3_std | -40.92344513873499 |
nauc_map_at_5_diff1 | -12.899827975508286 |
nauc_map_at_5_max | 56.55724779187716 |
nauc_map_at_5_std | -38.50107328981899 |
nauc_mrr_at_1000_diff1 | -20.480388426956775 |
nauc_mrr_at_1000_max | 59.34434186773745 |
nauc_mrr_at_1000_std | -38.78219708358511 |
nauc_mrr_at_100_diff1 | -20.733217227513638 |
nauc_mrr_at_100_max | 59.338571965753026 |
nauc_mrr_at_100_std | -38.905241386083524 |
nauc_mrr_at_10_diff1 | -23.191503817950903 |
nauc_mrr_at_10_max | 59.40585262343663 |
nauc_mrr_at_10_std | -39.558082853802894 |
nauc_mrr_at_1_diff1 | -18.978624452195685 |
nauc_mrr_at_1_max | 88.73088274751811 |
nauc_mrr_at_1_std | -52.46400143099903 |
nauc_mrr_at_20_diff1 | -20.110327257289537 |
nauc_mrr_at_20_max | 57.24590011894607 |
nauc_mrr_at_20_std | -36.76057923211494 |
nauc_mrr_at_3_diff1 | -20.292924276357084 |
nauc_mrr_at_3_max | 62.92624417852826 |
nauc_mrr_at_3_std | -42.31284612573441 |
nauc_mrr_at_5_diff1 | -22.088780368608298 |
nauc_mrr_at_5_max | 61.62928734634482 |
nauc_mrr_at_5_std | -38.47155384792127 |
nauc_ndcg_at_1000_diff1 | -21.96644342707332 |
nauc_ndcg_at_1000_max | 54.04115629470727 |
nauc_ndcg_at_1000_std | -38.60954619686922 |
nauc_ndcg_at_100_diff1 | -28.508933576201116 |
nauc_ndcg_at_100_max | 53.62925134001747 |
nauc_ndcg_at_100_std | -41.66742945815351 |
nauc_ndcg_at_10_diff1 | -19.22314681419278 |
nauc_ndcg_at_10_max | 44.88305374351992 |
nauc_ndcg_at_10_std | -32.86086137849654 |
nauc_ndcg_at_1_diff1 | -18.978624452195685 |
nauc_ndcg_at_1_max | 88.73088274751811 |
nauc_ndcg_at_1_std | -52.46400143099903 |
nauc_ndcg_at_20_diff1 | -14.037813797353552 |
nauc_ndcg_at_20_max | 43.01748289241327 |
nauc_ndcg_at_20_std | -23.548077008049674 |
nauc_ndcg_at_3_diff1 | -19.9659903984576 |
nauc_ndcg_at_3_max | 64.99817864354436 |
nauc_ndcg_at_3_std | -45.246163550721796 |
nauc_ndcg_at_5_diff1 | -20.389688306447788 |
nauc_ndcg_at_5_max | 61.370293646369454 |
nauc_ndcg_at_5_std | -39.9134710853091 |
nauc_precision_at_1000_diff1 | -26.69952361901621 |
nauc_precision_at_1000_max | 46.40932456102013 |
nauc_precision_at_1000_std | -37.38094677778857 |
nauc_precision_at_100_diff1 | -29.692268260058146 |
nauc_precision_at_100_max | 49.265913223173584 |
nauc_precision_at_100_std | -41.45888232985447 |
nauc_precision_at_10_diff1 | -20.974428245377048 |
nauc_precision_at_10_max | 53.924262890679564 |
nauc_precision_at_10_std | -35.74456192649867 |
nauc_precision_at_1_diff1 | -18.978624452195685 |
nauc_precision_at_1_max | 88.73088274751811 |
nauc_precision_at_1_std | -52.46400143099903 |
nauc_precision_at_20_diff1 | -23.03848763224966 |
nauc_precision_at_20_max | 51.19001778609016 |
nauc_precision_at_20_std | -33.25265416139501 |
nauc_precision_at_3_diff1 | -19.497362250879267 |
nauc_precision_at_3_max | 64.71277842907384 |
nauc_precision_at_3_std | -44.512016412661204 |
nauc_precision_at_5_diff1 | -18.918918918918912 |
nauc_precision_at_5_max | 64.89456489456494 |
nauc_precision_at_5_std | -37.37960880818024 |
nauc_recall_at_1000_diff1 | .nan |
nauc_recall_at_1000_max | .nan |
nauc_recall_at_1000_std | .nan |
nauc_recall_at_100_diff1 | -44.51937508102329 |
nauc_recall_at_100_max | 25.75429602376942 |
nauc_recall_at_100_std | -33.30783195688129 |
nauc_recall_at_10_diff1 | -18.776401920240275 |
nauc_recall_at_10_max | 23.00791681188562 |
nauc_recall_at_10_std | -21.576198296256532 |
nauc_recall_at_1_diff1 | -13.741863044507388 |
nauc_recall_at_1_max | 88.80266056441289 |
nauc_recall_at_1_std | -52.44805080502242 |
nauc_recall_at_20_diff1 | -3.8724115673803343 |
nauc_recall_at_20_max | 21.50124528790692 |
nauc_recall_at_20_std | -1.6719812367243132 |
nauc_recall_at_3_diff1 | -20.21079163108882 |
nauc_recall_at_3_max | 42.152167178196684 |
nauc_recall_at_3_std | -36.258746145318526 |
nauc_recall_at_5_diff1 | -22.10269915203519 |
nauc_recall_at_5_max | 43.30767031613079 |
nauc_recall_at_5_std | -27.398704255640478 |
ndcg_at_1 | 6.0 |
ndcg_at_10 | 7.432999999999999 |
ndcg_at_100 | 26.354 |
ndcg_at_1000 | 30.558000000000003 |
ndcg_at_20 | 11.143 |
ndcg_at_3 | 7.979 |
ndcg_at_5 | 6.81 |
precision_at_1 | 6.0 |
precision_at_10 | 4.2 |
precision_at_100 | 3.1199999999999997 |
precision_at_1000 | 0.38999999999999996 |
precision_at_20 | 4.2 |
precision_at_3 | 8.0 |
precision_at_5 | 5.6000000000000005 |
recall_at_1 | 0.604 |
recall_at_10 | 9.678 |
recall_at_100 | 78.645 |
recall_at_1000 | 100.0 |
recall_at_20 | 20.79 |
recall_at_3 | 4.261 |
recall_at_5 | 5.011 |
Results on MTEB AILAStatutes (default)
Metric | Value |
---|---|
main_score | 13.624 |
map_at_1 | 1.7999999999999998 |
map_at_10 | 6.41 |
map_at_100 | 11.995000000000001 |
map_at_1000 | 11.995000000000001 |
map_at_20 | 7.33 |
map_at_3 | 4.089 |
map_at_5 | 5.192 |
mrr_at_1 | 8.0 |
mrr_at_10 | 20.935714285714287 |
mrr_at_100 | 23.02755974294914 |
mrr_at_1000 | 23.02755974294914 |
mrr_at_20 | 22.1038126476207 |
mrr_at_3 | 15.333333333333332 |
mrr_at_5 | 19.533333333333335 |
nauc_map_at_1000_diff1 | 5.278882422253006 |
nauc_map_at_1000_max | 3.7333073133608896 |
nauc_map_at_1000_std | -4.5637189871999775 |
nauc_map_at_100_diff1 | 5.278882422253006 |
nauc_map_at_100_max | 3.7333073133608896 |
nauc_map_at_100_std | -4.5637189871999775 |
nauc_map_at_10_diff1 | 8.570212263630141 |
nauc_map_at_10_max | -6.6489980060039295 |
nauc_map_at_10_std | -12.162352126704402 |
nauc_map_at_1_diff1 | 7.476969859583216 |
nauc_map_at_1_max | -26.629997316876853 |
nauc_map_at_1_std | -23.469874489461308 |
nauc_map_at_20_diff1 | 7.222345063366828 |
nauc_map_at_20_max | -2.5103197323267223 |
nauc_map_at_20_std | -10.997015623527455 |
nauc_map_at_3_diff1 | 14.924734426277178 |
nauc_map_at_3_max | -11.92937537932614 |
nauc_map_at_3_std | -4.9319666083973255 |
nauc_map_at_5_diff1 | 8.080773945621521 |
nauc_map_at_5_max | -3.8175754142607836 |
nauc_map_at_5_std | -4.541639774033337 |
nauc_mrr_at_1000_diff1 | 2.4122089783406646 |
nauc_mrr_at_1000_max | -15.876004562207497 |
nauc_mrr_at_1000_std | -12.985028057822372 |
nauc_mrr_at_100_diff1 | 2.4122089783406646 |
nauc_mrr_at_100_max | -15.876004562207497 |
nauc_mrr_at_100_std | -12.985028057822372 |
nauc_mrr_at_10_diff1 | 0.2857311186354727 |
nauc_mrr_at_10_max | -14.63697545190418 |
nauc_mrr_at_10_std | -12.056570964159198 |
nauc_mrr_at_1_diff1 | 6.868795277703242 |
nauc_mrr_at_1_max | -24.845720418567222 |
nauc_mrr_at_1_std | -20.686879527770337 |
nauc_mrr_at_20_diff1 | 1.8452171261188577 |
nauc_mrr_at_20_max | -15.538023663956924 |
nauc_mrr_at_20_std | -13.690749771450164 |
nauc_mrr_at_3_diff1 | 10.557261573838256 |
nauc_mrr_at_3_max | -20.946427791765498 |
nauc_mrr_at_3_std | -10.389166217927242 |
nauc_mrr_at_5_diff1 | 8.148148148148148 |
nauc_mrr_at_5_max | -13.148148148148148 |
nauc_mrr_at_5_std | -4.999999999999999 |
nauc_ndcg_at_1000_diff1 | 2.4122089783406646 |
nauc_ndcg_at_1000_max | -15.876004562207497 |
nauc_ndcg_at_1000_std | -12.985028057822372 |
nauc_ndcg_at_100_diff1 | 2.4122089783406646 |
nauc_ndcg_at_100_max | -15.876004562207497 |
nauc_ndcg_at_100_std | -12.985028057822372 |
nauc_ndcg_at_10_diff1 | 0.2857311186354727 |
nauc_ndcg_at_10_max | -14.63697545190418 |
nauc_ndcg_at_10_std | -12.056570964159198 |
nauc_ndcg_at_1_diff1 | 6.868795277703242 |
nauc_ndcg_at_1_max | -24.845720418567222 |
nauc_ndcg_at_1_std | -20.686879527770337 |
nauc_ndcg_at_20_diff1 | 1.8452171261188577 |
nauc_ndcg_at_20_max | -15.538023663956924 |
nauc_ndcg_at_20_std | -13.690749771450164 |
nauc_ndcg_at_3_diff1 | 10.557261573838256 |
nauc_ndcg_at_3_max | -20.946427791765498 |
nauc_ndcg_at_3_std | -10.389166217927242 |
nauc_ndcg_at_5_diff1 | 8.148148148148148 |
nauc_ndcg_at_5_max | -13.148148148148148 |
nauc_ndcg_at_5_std | -4.999999999999999 |
nauc_precision_at_1000_diff1 | 2.4122089783406646 |
nauc_precision_at_1000_max | -15.876004562207497 |
nauc_precision_at_1000_std | -12.985028057822372 |
nauc_precision_at_100_diff1 | 2.4122089783406646 |
nauc_precision_at_100_max | -15.876004562207497 |
nauc_precision_at_100_std | -12.985028057822372 |
nauc_precision_at_10_diff1 | 0.2857311186354727 |
nauc_precision_at_10_max | -14.63697545190418 |
nauc_precision_at_10_std | -12.056570964159198 |
nauc_precision_at_1_diff1 | 6.868795277703242 |
nauc_precision_at_1_max | -24.845720418567222 |
nauc_precision_at_1_std | -20.686879527770337 |
nauc_precision_at_20_diff1 | 1.8452171261188577 |
nauc_precision_at_20_max | -15.538023663956924 |
nauc_precision_at_20_std | -13.690749771450164 |
nauc_precision_at_3_diff1 | 10.557261573838256 |
nauc_precision_at_3_max | -20.946427791765498 |
nauc_precision_at_3_std | -10.389166217927242 |
nauc_precision_at_5_diff1 | 8.148148148148148 |
nauc_precision_at_5_max | -13.148148148148148 |
nauc_precision_at_5_std | -4.999999999999999 |
nauc_recall_at_1000_diff1 | .nan |
nauc_recall_at_1000_max | .nan |
nauc_recall_at_1000_std | .nan |
nauc_recall_at_100_diff1 | -22.259687540511645 |
nauc_recall_at_100_max | 12.87714801188471 |
nauc_recall_at_100_std | -16.653915978440645 |
nauc_recall_at_10_diff1 | -9.388200960120137 |
nauc_recall_at_10_max | 11.50395840594281 |
nauc_recall_at_10_std | -10.788979282970666 |
nauc_recall_at_1_diff1 | 3.434397638851621 |
nauc_recall_at_1_max | -12.422860209283611 |
nauc_recall_at_1_std | -8.98846257043201 |
nauc_recall_at_20_diff1 | -1.936205783644667 |
nauc_recall_at_20_max | 10.750622608973035 |
nauc_recall_at_20_std | -6.848413795109831 |
nauc_recall_at_3_diff1 | -10.10539581554441 |
nauc_recall_at_3_max | 21.07608358909834 |
nauc_recall_at_3_std | -15.580891292279175 |
nauc_recall_at_5_diff1 | -11.054349076017595 |
nauc_recall_at_5_max | 21.653835158065395 |
nauc_recall_at_5_std | -13.3297425790239 |
ndcg_at_1 | 8.0 |
ndcg_at_10 | 13.624 |
ndcg_at_100 | 28.048 |
ndcg_at_1000 | 30.558000000000003 |
ndcg_at_20 | 16.643 |
ndcg_at_3 | 10.979 |
ndcg_at_5 | 8.81 |
precision_at_1 | 8.0 |
precision_at_10 | 6.2 |
precision_at_100 | 3.1199999999999997 |
precision_at_1000 | 0.38999999999999996 |
precision_at_20 | 6.2 |
precision_at_3 | 10.0 |
precision_at_5 | 7.6000000000000005 |
recall_at_1 | 1.7999999999999998 |
recall_at_10 | 19.678 |
recall_at_100 | 78.645 |
recall_at_1000 | 100.0 |
recall_at_20 | 40.79 |
recall_at_3 | 4.261 |
recall_at_5 | 5.011 |
📄 License
This project is licensed under the MIT license.
Jina Embeddings V3
Jina Embeddings V3 is a multilingual sentence embedding model supporting over 100 languages, specializing in sentence similarity and feature extraction tasks.
Text Embedding
Transformers Supports Multiple Languages

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
A cross-encoder model trained on the MS Marco passage ranking task for query-passage relevance scoring in information retrieval
Text Embedding English
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
A sparse retrieval model based on distillation technology, optimized for OpenSearch, supporting inference-free document encoding with improved search relevance and efficiency over V1
Text Embedding
Transformers English

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
A biomedical entity representation model based on PubMedBERT, optimized for semantic relation capture through self-aligned pre-training
Text Embedding English
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large is a powerful sentence transformer model focused on sentence similarity and text embedding tasks, excelling in multiple benchmark tests.
Text Embedding English
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 is an English sentence transformer model focused on sentence similarity tasks, excelling in multiple text embedding benchmarks.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base is a multilingual sentence embedding model supporting over 50 languages, suitable for tasks like sentence similarity calculation.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT is a chemical language model designed to achieve fully machine-driven ultrafast polymer informatics. It maps PSMILES strings into 600-dimensional dense fingerprints to numerically represent polymer chemical structures.
Text Embedding
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
A sentence embedding model based on Turkish BERT, optimized for semantic similarity tasks
Text Embedding
Transformers Other

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
A text embedding model fine-tuned based on BAAI/bge-small-en-v1.5, trained with the MEDI dataset and MTEB classification task datasets, optimized for query encoding in retrieval tasks.
Text Embedding
Safetensors English
G
avsolatorio
945.68k
29
Featured Recommended AI Models