Granite Embedding 30m English
G
Granite Embedding 30m English
Developed by ibm-granite
IBM Granite Embedding 30M English is a transformer-based English text embedding model developed and released by IBM.
Downloads 78.53k
Release Time : 12/4/2024
Model Overview
This model is primarily used for generating high-quality English text embeddings, suitable for various natural language processing tasks such as text classification and information retrieval.
Model Features
High-Quality Text Embeddings
Capable of generating high-quality English text embeddings, suitable for various downstream tasks.
Multi-Task Support
Performs well on multiple natural language processing tasks, including text classification and information retrieval.
Lightweight
With a model parameter size of 30M, it is relatively lightweight and suitable for resource-constrained environments.
Model Capabilities
Text Embedding Generation
Text Classification
Information Retrieval
Use Cases
E-commerce
Amazon Review Classification
Used for classifying Amazon product reviews to identify positive and negative feedback.
Achieved an accuracy of 62.98% on the MTEB AmazonPolarityClassification dataset.
Information Retrieval
App Retrieval
Used for retrieving relevant applications to improve search result relevance.
Achieved an NDCG@10 of 6.20 on the MTEB AppsRetrieval dataset.
🚀 ibm-granite/granite-embedding-30m-english
This is a language model related to embeddings, achieving certain performance on multiple MTEB tasks.
📚 Documentation
Model Information
Property | Details |
---|---|
Model Type | sentence-transformers |
Tags | language , granite , embeddings , mteb , transformers |
Performance Metrics
MTEB AmazonCounterfactualClassification (en-ext)
- Task: Classification | Metric | Value | |--------|-------| | accuracy | 62.856100000000005 | | f1 | 51.5046 | | f1_weighted | 69.9775 | | ap | 15.4995 | | ap_weighted | 15.4995 | | main_score | 62.856100000000005 |
MTEB AmazonCounterfactualClassification (en)
- Task: Classification | Metric | Value | |--------|-------| | accuracy | 60.925399999999996 | | f1 | 55.0092 | | f1_weighted | 64.8014 | | ap | 25.0517 | | ap_weighted | 25.0517 | | main_score | 60.925399999999996 |
MTEB AmazonPolarityClassification (default)
- Task: Classification | Metric | Value | |--------|-------| | accuracy | 62.983599999999996 | | f1 | 62.553599999999996 | | f1_weighted | 62.553599999999996 | | ap | 58.3423 | | ap_weighted | 58.3423 | | main_score | 62.983599999999996 |
MTEB AmazonReviewsClassification (en)
- Task: Classification | Metric | Value | |--------|-------| | accuracy | 32.178000000000004 | | f1 | 31.5201 | | f1_weighted | 31.5201 | | main_score | 32.178000000000004 |
MTEB AppsRetrieval (default)
- Task: Retrieval | Metric | Value | |--------|-------| | ndcg_at_1 | 3.5060000000000002 | | ndcg_at_3 | 4.789000000000001 | | ndcg_at_5 | 5.314 | | ndcg_at_10 | 6.203 | | ndcg_at_20 | 6.801 | | ndcg_at_100 | 8.588 | | ndcg_at_1000 | 12.418999999999999 | | map_at_1 | 3.5060000000000002 | | map_at_3 | 4.471 | | map_at_5 | 4.7620000000000005 | | map_at_10 | 5.117 | | map_at_20 | 5.281000000000001 | | map_at_100 | 5.501 | | map_at_1000 | 5.611 | | recall_at_1 | 3.5060000000000002 | | recall_at_3 | 5.71 | | recall_at_5 | 6.984999999999999 | | recall_at_10 | 9.801 | | recall_at_20 | 12.165 | | recall_at_100 | 22.205 | | recall_at_1000 | 54.396 | | precision_at_1 | 3.5060000000000002 | | precision_at_3 | 1.9029999999999998 | | precision_at_5 | 1.397 | | precision_at_10 | 0.98 | | precision_at_20 | 0.608 | | precision_at_100 | 0.22200000000000003 | | precision_at_1000 | 0.054 | | mrr_at_1 | 3.5060000000000002 | | mrr_at_3 | 4.471 | | mrr_at_5 | 4.7618 | | mrr_at_10 | 5.1166 | | mrr_at_20 | 5.2806 | | mrr_at_100 | 5.5014 | | mrr_at_1000 | 5.6113 | | nauc_ndcg_at_1_max | 32.8089 | | nauc_ndcg_at_1_std | 13.0518 | | nauc_ndcg_at_1_diff1 | 44.3602 | | nauc_ndcg_at_3_max | 28.5037 | | nauc_ndcg_at_3_std | 12.1308 | | nauc_ndcg_at_3_diff1 | 33.0191 | | nauc_ndcg_at_5_max | 25.970100000000002 | | nauc_ndcg_at_5_std | 12.089500000000001 | | nauc_ndcg_at_5_diff1 | 30.098200000000002 | | nauc_ndcg_at_10_max | 23.9177 | | nauc_ndcg_at_10_std | 12.1279 | | nauc_ndcg_at_10_diff1 | 26.3951 | | nauc_ndcg_at_20_max | 22.2086 | | nauc_ndcg_at_20_std | 11.355 | | nauc_ndcg_at_20_diff1 | 24.9668 | | nauc_ndcg_at_100_max | 20.1961 | | nauc_ndcg_at_100_std | 11.368300000000001 | | nauc_ndcg_at_100_diff1 | 21.654200000000003 | | nauc_ndcg_at_1000_max | 19.7802 | | nauc_ndcg_at_1000_std | 11.9399 | | nauc_ndcg_at_1000_diff1 | 19.8429 | | nauc_map_at_1_max | 32.8089 | | nauc_map_at_1_std | 13.0518 | | nauc_map_at_1_diff1 | 44.3602 | | nauc_map_at_3_max | 29.285600000000002 | | nauc_map_at_3_std | 12.4277 | | nauc_map_at_3_diff1 | 35.2678 | | nauc_map_at_5_max | 27.6754 | | nauc_map_at_5_std | 12.4042 | | nauc_map_at_5_diff1 | 33.330799999999996 | | nauc_map_at_10_max | 26.571299999999997 | | nauc_map_at_10_std | 12.439400000000001 | | nauc_map_at_10_diff1 | 31.275399999999998 | | nauc_map_at_20_max | 25.8795 | | nauc_map_at_20_std | 12.1596 | | nauc_map_at_20_diff1 | 30.6354 | | nauc_map_at_100_max | 25.3369 | | nauc_map_at_100_std | 12.0245 | | nauc_map_at_100_diff1 | 29.8703 | | nauc_map_at_1000_max | 25.239800000000002 | | nauc_map_at_1000_std | 12.0242 | | nauc_map_at_1000_diff1 | 29.7235 | | nauc_recall_at_1_max | 32.8089 | | nauc_recall_at_1_std | 13.0518 | | nauc_recall_at_1_diff1 | 44.3602 | | nauc_recall_at_3_max | 26.747700000000002 | | nauc_recall_at_3_std | 11.4203 | | nauc_recall_at_3_diff1 | 27.9047 | | nauc_recall_at_5_max | 22.3707 | | nauc_recall_at_5_std | 11.4164 | | nauc_recall_at_5_diff1 | 23.4182 | | nauc_recall_at_10_max | 19.2758 | | nauc_recall_at_10_std | 11.578800000000001 | | nauc_recall_at_10_diff1 | 18.030099999999997 | | nauc_recall_at_20_max | 16.1643 | | nauc_recall_at_20_std | 9.9037 | | nauc_recall_at_20_diff1 | 16.0833 | | nauc_recall_at_100_max | 13.644700000000002 | | nauc_recall_at_100_std | 10.986799999999999 | | nauc_recall_at_100_diff1 | 11.0515 | | nauc_recall_at_1000_max | 13.9712 | | nauc_recall_at_1000_std | 13.4048 | | nauc_recall_at_1000_diff1 | 6.569500000000001 | | nauc_precision_at_1_max | 32.8089 | | nauc_precision_at_1_std | 13.0518 | | nauc_precision_at_1_diff1 | 44.3602 | | nauc_precision_at_3_max | 26.747700000000002 | | nauc_precision_at_3_std | 11.4203 | | nauc_precision_at_3_diff1 | 27.9047 | | nauc_precision_at_5_max | 22.3707 | | nauc_precision_at_5_std | 11.4164 | | nauc_precision_at_5_diff1 | 23.4182 | | nauc_precision_at_10_max | 19.2758 | | nauc_precision_at_10_std | 11.578800000000001 | | nauc_precision_at_10_diff1 | 18.030099999999997 | | nauc_precision_at_20_max | 16.1643 | | nauc_precision_at_20_std | 9.9037 | | nauc_precision_at_20_diff1 | 16.0833 | | nauc_precision_at_100_max | 13.644700000000002 | | nauc_precision_at_100_std | 10.986799999999999 | | nauc_precision_at_100_diff1 | 11.0515 | | nauc_precision_at_1000_max | 13.9712 | | nauc_precision_at_1000_std | 13.4048 | | nauc_precision_at_1000_diff1 | 6.569500000000001 | | nauc_mrr_at_1_max | 32.8089 | | nauc_mrr_at_1_std | 13.0518 | | nauc_mrr_at_1_diff1 | 44.3602 | | nauc_mrr_at_3_max | 29.285600000000002 | | nauc_mrr_at_3_std | 12.4277 | | nauc_mrr_at_3_diff1 | 35.2678 | | nauc_mrr_at_5_max | 27.6754 | | nauc_mrr_at_5_std | 12.4042 | | nauc_mrr_at_5_diff1 | 33.330799999999996 | | nauc_mrr_at_10_max | 26.571299999999997 | | nauc_mrr_at_10_std | 12.439400000000001 | | nauc_mrr_at_10_diff1 | 31.275399999999998 | | nauc_mrr_at_20_max | 25.8795 | | nauc_mrr_at_20_std | 12.1596 | | nauc_mrr_at_20_diff1 | 30.6354 | | nauc_mrr_at_100_max | 25.337 | | nauc_mrr_at_100_std | 12.0245 | | nauc_mrr_at_100_diff1 | 29.870400000000004 | | nauc_mrr_at_1000_max | 25.2399 | | nauc_mrr_at_1000_std | 12.0242 | | nauc_mrr_at_1000_diff1 | 29.7236 | | main_score | 6.203 |
MTEB ArguAna (default)
- Task: Retrieval | Metric | Value | |--------|-------| | ndcg_at_1 | 31.791999999999998 | | ndcg_at_3 | 46.453 | | ndcg_at_5 | 51.623 | | ndcg_at_10 | 56.355999999999995 | | ndcg_at_20 | 58.757000000000005 | | ndcg_at_100 | 59.789 | | ndcg_at_1000 | 59.857000000000006 | | map_at_1 | 31.791999999999998 | | map_at_3 | 42.757 | | map_at_5 | 45.634 | | map_at_10 | 47.599000000000004 | | map_at_20 | 48.271 | | map_at_100 | 48.425000000000004 | | map_at_1000 | 48.427 | | recall_at_1 | 31.791999999999998 | | recall_at_3 | 57.18299999999999 | | recall_at_5 | 69.70100000000001 | | recall_at_10 | 84.282 | | recall_at_20 | 93.67 | | recall_at_100 | 99.075 | | recall_at_1000 | 99.644 | | precision_at_1 | 31.791999999999998 | | precision_at_3 | 19.061 | | precision_at_5 | 13.94 | | precision_at_10 | 8.427999999999999 | | precision_at_20 | 4.683 | | precision_at_100 | 0.991 | | precision_at_1000 | 0.1 | | mrr_at_1 | 32.3613 | | mrr_at_3 | 42.935 | | mrr_at_5 | 45.844 | | mrr_at_10 | 47.808099999999996 | | mrr_at_20 | 48.4844 | | mrr_at_100 | 48.6345 | | mrr_at_1000 | 48.6364 | | nauc_ndcg_at_1_max | -8.274099999999999 | | nauc_ndcg_at_1_std | -8.1976 | | nauc_ndcg_at_1_diff1 | 14.155100000000001 | | nauc_ndcg_at_3_max | -4.6223 | | nauc_ndcg_at_3_std | -10.198500000000001 | | nauc_ndcg_at_3_diff1 | 14.516499999999999 | | nauc_ndcg_at_5_max | -4.9834000000000005 | | nauc_ndcg_at_5_std | -9.6634 | | nauc_ndcg_at_5_diff1 | 12.9298 | | nauc_ndcg_at_10_max | -4.3251 | | nauc_ndcg_at_10_std | -8.3068 | | nauc_ndcg_at_10_diff1 | 12.2939 | | nauc_ndcg_at_20_max | -3.8912000000000004 | | nauc_ndcg_at_20_std | -8.1821 | | nauc_ndcg_at_20_diff1 | 12.673599999999999 | | nauc_ndcg_at_100_max | -3.8912000000000004 | | nauc_ndcg_at_100_std | -8.1821 | | nauc_ndcg_at_100_diff1 | 12.673599999999999 | | nauc_ndcg_at_1000_max | -3.8912000000000004 | | nauc_ndcg_at_1000_std | -8.1821 | | nauc_ndcg_at_1000_diff1 | 12.673599999999999 | | nauc_map_at_1_max | -8.274099999999999 | | nauc_map_at_1_std | -8.1976 | | nauc_map_at_1_diff1 | 14.155100000000001 | | nauc_map_at_3_max | -4.6223 | | nauc_map_at_3_std | -10.198500000000001 | | nauc_map_at_3_diff1 | 14.516499999999999 | | nauc_map_at_5_max | -4.9834000000000005 | | nauc_map_at_5_std | -9.6634 | | nauc_map_at_5_diff1 | 12.9298 | | nauc_map_at_10_max | -4.3251 | | nauc_map_at_10_std | -8.3068 | | nauc_map_at_10_diff1 | 12.2939 | | nauc_map_at_20_max | -3.8912000000000004 | | nauc_map_at_20_std | -8.1821 | | nauc_map_at_20_diff1 | 12.673599999999999 | | nauc_map_at_100_max | -3.8912000000000004 | | nauc_map_at_100_std | -8.1821 | | nauc_map_at_100_diff1 | 12.673599999999999 | | nauc_map_at_1000_max | -3.8912000000000004 | | nauc_map_at_1000_std | -8.1821 | | nauc_map_at_1000_diff1 | 12.673599999999999 | | nauc_recall_at_1_max | -8.274099999999999 | | nauc_recall_at_1_std | -8.1976 | | nauc_recall_at_1_diff1 | 14.155100000000001 | | nauc_recall_at_3_max | -4.6223 | | nauc_recall_at_3_std | -10.198500000000001 | | nauc_recall_at_3_diff1 | 14.516499999999999 | | nauc_recall_at_5_max | -4.9834000000000005 | | nauc_recall_at_5_std | -9.6634 | | nauc_recall_at_5_diff1 | 12.9298 | | nauc_recall_at_10_max | -4.3251 | | nauc_recall_at_10_std | -8.3068 | | nauc_recall_at_10_diff1 | 12.2939 | | nauc_recall_at_20_max | -3.8912000000000004 | | nauc_recall_at_20_std | -8.1821 | | nauc_recall_at_20_diff1 | 12.673599999999999 | | nauc_recall_at_100_max | -3.8912000000000004 | | nauc_recall_at_100_std | -8.1821 | | nauc_recall_at_100_diff1 | 12.673599999999999 | | nauc_recall_at_1000_max | -3.8912000000000004 | | nauc_recall_at_1000_std | -8.1821 | | nauc_recall_at_1000_diff1 | 12.673599999999999 | | nauc_precision_at_1_max | -8.274099999999999 | | nauc_precision_at_1_std | -8.1976 | | nauc_precision_at_1_diff1 | 14.155100000000001 | | nauc_precision_at_3_max | -4.6223 | | nauc_precision_at_3_std | -10.198500000000001 | | nauc_precision_at_3_diff1 | 14.516499999999999 | | nauc_precision_at_5_max | -4.9834000000000005 | | nauc_precision_at_5_std | -9.6634 | | nauc_precision_at_5_diff1 | 12.9298 | | nauc_precision_at_10_max | -4.3251 | | nauc_precision_at_10_std | -8.3068 | | nauc_precision_at_10_diff1 | 12.2939 | | nauc_precision_at_20_max | -3.8912000000000004 | | nauc_precision_at_20_std | -8.1821 | | nauc_precision_at_20_diff1 | 12.673599999999999 | | nauc_precision_at_100_max | -3.8912000000000004 | | nauc_precision_at_100_std | -8.1821 | | nauc_precision_at_100_diff1 | 12.673599999999999 | | nauc_precision_at_1000_max | -3.8912000000000004 | | nauc_precision_at_1000_std | -8.1821 | | nauc_precision_at_1000_diff1 | 12.673599999999999 | | nauc_mrr_at_1_max | -8.274099999999999 | | nauc_mrr_at_1_std | -8.1976 | | nauc_mrr_at_1_diff1 | 14.155100000000001 | | nauc_mrr_at_3_max | -4.6223 | | nauc_mrr_at_3_std | -10.198500000000001 | | nauc_mrr_at_3_diff1 | 14.516499999999999 | | nauc_mrr_at_5_max | -4.9834000000000005 | | nauc_mrr_at_5_std | -9.6634 | | nauc_mrr_at_5_diff1 | 12.9298 | | nauc_mrr_at_10_max | -4.3251 | | nauc_mrr_at_10_std | -8.3068 | | nauc_mrr_at_10_diff1 | 12.2939 | | nauc_mrr_at_20_max | -3.8912000000000004 | | nauc_mrr_at_20_std | -8.1821 | | nauc_mrr_at_20_diff1 | 12.673599999999999 | | nauc_mrr_at_100_max | -3.8912000000000004 | | nauc_mrr_at_100_std | -8.1821 | | nauc_mrr_at_100_diff1 | 12.673599999999999 | | nauc_mrr_at_1000_max | -3.8912000000000004 | | nauc_mrr_at_1000_std | -8.1821 | | nauc_mrr_at_1000_diff1 | 12.673599999999999 | | main_score | 56.355999999999995 |
📄 License
This project is licensed under the Apache-2.0 license.
Jina Embeddings V3
Jina Embeddings V3 is a multilingual sentence embedding model supporting over 100 languages, specializing in sentence similarity and feature extraction tasks.
Text Embedding
Transformers Supports Multiple Languages

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
A cross-encoder model trained on the MS Marco passage ranking task for query-passage relevance scoring in information retrieval
Text Embedding English
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
A sparse retrieval model based on distillation technology, optimized for OpenSearch, supporting inference-free document encoding with improved search relevance and efficiency over V1
Text Embedding
Transformers English

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
A biomedical entity representation model based on PubMedBERT, optimized for semantic relation capture through self-aligned pre-training
Text Embedding English
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large is a powerful sentence transformer model focused on sentence similarity and text embedding tasks, excelling in multiple benchmark tests.
Text Embedding English
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 is an English sentence transformer model focused on sentence similarity tasks, excelling in multiple text embedding benchmarks.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base is a multilingual sentence embedding model supporting over 50 languages, suitable for tasks like sentence similarity calculation.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT is a chemical language model designed to achieve fully machine-driven ultrafast polymer informatics. It maps PSMILES strings into 600-dimensional dense fingerprints to numerically represent polymer chemical structures.
Text Embedding
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
A sentence embedding model based on Turkish BERT, optimized for semantic similarity tasks
Text Embedding
Transformers Other

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
A text embedding model fine-tuned based on BAAI/bge-small-en-v1.5, trained with the MEDI dataset and MTEB classification task datasets, optimized for query encoding in retrieval tasks.
Text Embedding
Safetensors English
G
avsolatorio
945.68k
29
Featured Recommended AI Models