🚀 SGPT-125M-weightedmean-msmarco-specb-bitfit
This model is designed for sentence similarity tasks, leveraging sentence-transformers for feature extraction. It has been evaluated on multiple datasets across various tasks such as Classification, Retrieval, Clustering, Reranking, and STS, with detailed performance metrics provided.
📚 Documentation
Model Information
Property |
Details |
Pipeline Tag |
sentence-similarity |
Tags |
sentence-transformers, feature-extraction, sentence-similarity, mteb |
Model Name |
SGPT-125M-weightedmean-msmarco-specb-bitfit |
Evaluation Results
Classification Tasks
Task |
Dataset |
Language |
Accuracy |
AP |
F1 |
Classification |
MTEB AmazonCounterfactualClassification |
en |
61.23880597014926 |
25.854431650388644 |
55.751862762818604 |
Classification |
MTEB AmazonCounterfactualClassification |
de |
56.88436830835117 |
72.67279104379772 |
54.449840243786404 |
Classification |
MTEB AmazonCounterfactualClassification |
en-ext |
58.27586206896551 |
14.067357642500387 |
48.172318518691334 |
Classification |
MTEB AmazonCounterfactualClassification |
ja |
54.64668094218415 |
11.776694555054965 |
44.526622834078765 |
Classification |
MTEB AmazonPolarityClassification |
default |
65.401225 |
60.22809958678552 |
65.0251824898292 |
Classification |
MTEB AmazonReviewsClassification |
en |
31.165999999999993 |
- |
30.908870050167437 |
Classification |
MTEB AmazonReviewsClassification |
de |
24.79 |
- |
24.5833598854121 |
Classification |
MTEB AmazonReviewsClassification |
es |
26.643999999999995 |
- |
26.39012792213563 |
Classification |
MTEB AmazonReviewsClassification |
fr |
26.386000000000003 |
- |
26.276867791454873 |
Classification |
MTEB AmazonReviewsClassification |
ja |
22.078000000000003 |
- |
21.797960290226843 |
Classification |
MTEB AmazonReviewsClassification |
zh |
24.274 |
- |
23.887054434822627 |
Classification |
MTEB Banking77Classification |
default |
77.70454545454545 |
- |
77.6929000113803 |
Retrieval Tasks
Task |
Dataset |
MAP@1 |
MAP@10 |
MAP@100 |
MAP@1000 |
MRR@1 |
MRR@10 |
MRR@100 |
MRR@1000 |
NDCG@1 |
NDCG@10 |
NDCG@100 |
NDCG@1000 |
Precision@1 |
Precision@10 |
Precision@100 |
Precision@1000 |
Recall@1 |
Recall@10 |
Recall@100 |
Recall@1000 |
Retrieval |
MTEB ArguAna |
22.404 |
36.845 |
37.945 |
37.966 |
22.902 |
37.034 |
38.134 |
38.155 |
22.404 |
45.425 |
50.354 |
50.873999999999995 |
22.404 |
7.303999999999999 |
0.951 |
0.099 |
22.404 |
73.044 |
95.092 |
99.075 |
Retrieval |
MTEB CQADupstackAndroidRetrieval |
22.139 |
28.839 |
30.023 |
30.153000000000002 |
26.466 |
33.495000000000005 |
34.416999999999994 |
34.485 |
26.466 |
33.372 |
38.7 |
41.696 |
26.466 |
6.037 |
1.0670000000000002 |
0.16199999999999998 |
22.139 |
42.39 |
65.427 |
86.04899999999999 |
Retrieval |
MTEB CQADupstackEnglishRetrieval |
20.652 |
27.558 |
28.473 |
28.577 |
25.223000000000003 |
31.966 |
32.664 |
32.724 |
25.223000000000003 |
31.694 |
35.662 |
38.092 |
25.223000000000003 |
5.777 |
0.9730000000000001 |
0.13999999999999999 |
20.652 |
39.367999999999995 |
56.485 |
73.292 |
Retrieval |
MTEB CQADupstackGamingRetrieval |
25.180000000000003 |
34.579 |
35.589999999999996 |
35.68 |
29.467 |
37.967 |
38.800000000000004 |
38.858 |
29.467 |
39.796 |
44.531 |
46.666000000000004 |
29.467 |
6.601999999999999 |
0.9900000000000001 |
0.124 |
25.180000000000003 |
52.269 |
73.574 |
89.141 |
Clustering Tasks
Task |
Dataset |
V-Measure |
Clustering |
MTEB ArxivClusteringP2P |
39.70858340673288 |
Clustering |
MTEB ArxivClusteringS2S |
28.242847713721048 |
Clustering |
MTEB BiorxivClusteringP2P |
33.63260395543984 |
Clustering |
MTEB BiorxivClusteringS2S |
27.038042665369925 |
Reranking Task
Task |
Dataset |
MAP |
MRR |
Reranking |
MTEB AskUbuntuDupQuestions |
55.83700395192393 |
70.3891307215407 |
STS Task
Task |
Dataset |
Cosine Similarity Pearson |
Cosine Similarity Spearman |
Euclidean Pearson |
Euclidean Spearman |
Manhattan Pearson |
Manhattan Spearman |
STS |
MTEB BIOSSES |
79.25366801756223 |
75.20954502580506 |
78.79900722991617 |
77.79996549607588 |
78.18408109480399 |
76.85958262303106 |