🚀 sentence-IT5-small
This is a sentence-transformers model that maps sentences and paragraphs to a 512-dimensional dense vector space. It can be used for tasks such as clustering or semantic search. It is a T5 (IT5) small model trained for asymmetric semantic search, where the query is a keyword and the paragraph is a short news article.
🚀 Quick Start
📦 Installation
Using this model becomes easy when you have sentence-transformers installed. You can install it with the following command:
pip install -U sentence-transformers
💻 Usage Examples
Basic Usage (Sentence-Transformers)
After installation, you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"]
model = SentenceTransformer('efederici/sentence-IT5-small')
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage (HuggingFace Transformers)
Without sentence-transformers, you can use the model by passing your input through the transformer model and then applying the right pooling - operation on top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"]
tokenizer = AutoTokenizer.from_pretrained('efederici/sentence-IT5-small')
model = AutoModel.from_pretrained('efederici/sentence-IT5-small')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
🔧 Technical Details
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': None, 'do_lower_case': False}) with Transformer model: T5EncoderModel
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Information Table
Property |
Details |
Pipeline Tag |
sentence - similarity |
Language |
it |
Tags |
sentence - transformers, feature - extraction, sentence - similarity, transformers |