🚀 sentence-IT5-small
这是一个 sentence-transformers 模型,它可以将句子和段落映射到一个 512 维的密集向量空间,可用于聚类或语义搜索等任务。它基于 T5 (IT5) 小模型,针对非对称语义搜索进行了训练。其中,查询为关键词,段落为简短的新闻文章。
🚀 快速开始
📦 安装指南
若已安装 sentence-transformers,使用此模型将十分便捷:
pip install -U sentence-transformers
💻 使用示例
基础用法
使用 sentence-transformers
库调用模型:
from sentence_transformers import SentenceTransformer
sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"]
model = SentenceTransformer('efederici/sentence-IT5-small')
embeddings = model.encode(sentences)
print(embeddings)
高级用法
若未安装 sentence-transformers,可以按以下方式使用模型:首先,将输入数据传入 Transformer 模型,然后对上下文词嵌入应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"]
tokenizer = AutoTokenizer.from_pretrained('efederici/sentence-IT5-small')
model = AutoModel.from_pretrained('efederici/sentence-IT5-small')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
🔧 技术细节
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': None, 'do_lower_case': False}) with Transformer model: T5EncoderModel
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
属性 |
详情 |
模型类型 |
sentence-transformers |
任务标签 |
sentence-similarity、feature-extraction、sentence-similarity、transformers |
支持语言 |
意大利语(it) |