๐ bertin-roberta-base-finetuning-esnli
This is a sentence-transformers model trained on a collection of NLI tasks for Spanish. It maps sentences and paragraphs to a 768-dimensional dense vector space and can be used for tasks such as clustering or semantic search. Based on the siamese networks approach from this paper.
๐ Model Information
Property |
Details |
Model Type |
Sentence-transformers model for Spanish NLI tasks |
Training Data |
ESXNLI (Spanish part), SNLI (automatically translated), MultiNLI (automatically translated). Whole dataset available here |
You can see a demo for this model here.
You can find our other model, paraphrase-spanish-distilroberta here and its demo here.
๐ Quick Start
๐ฆ Installation
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
๐ป Usage Examples
๐ Basic Usage
from sentence_transformers import SentenceTransformer
sentences = ["Este es un ejemplo", "Cada oraciรณn es transformada"]
model = SentenceTransformer('hackathon-pln-es/bertin-roberta-base-finetuning-esnli')
embeddings = model.encode(sentences)
print(embeddings)
๐ Advanced Usage
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('hackathon-pln-es/bertin-roberta-base-finetuning-esnli')
model = AutoModel.from_pretrained('hackathon-pln-es/bertin-roberta-base-finetuning-esnli')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
๐ Evaluation Results
Our model was evaluated on the task of Semantic Textual Similarity using the SemEval-2015 Task for Spanish.
|
BETO STS |
BERTIN STS (this model) |
Relative improvement |
cosine_pearson |
0.609803 |
0.683188 |
+12.03 |
cosine_spearman |
0.528776 |
0.615916 |
+16.48 |
euclidean_pearson |
0.590613 |
0.672601 |
+13.88 |
euclidean_spearman |
0.526529 |
0.611539 |
+16.15 |
manhattan_pearson |
0.589108 |
0.672040 |
+14.08 |
manhattan_spearman |
0.525910 |
0.610517 |
+16.09 |
dot_pearson |
0.544078 |
0.600517 |
+10.37 |
dot_spearman |
0.460427 |
0.521260 |
+13.21 |
๐ง Technical Details
๐๏ธโ Training
The model was trained with the following parameters:
- Dataset: We used a collection of datasets of Natural Language Inference as training data, including ESXNLI (Spanish part only), SNLI (automatically translated), and MultiNLI (automatically translated). The whole dataset used is available here.
- DataLoader:
sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader
of length 1818 with parameters {'batch_size': 64}
.
- Loss:
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
with parameters {'scale': 20.0, 'similarity_fct': 'cos_sim'}
.
- Fit()-Method Parameters:
{
"epochs": 10,
"evaluation_steps": 0,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 909,
"weight_decay": 0.01
}
๐ Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
๐ฅ Authors