Bertin Roberta Base Finetuning Esnli
模型概述
該模型能將西班牙語句子和段落映射到768維稠密向量空間,適用於句子相似度計算、語義搜索和文本聚類等任務。
模型特點
西班牙語優化
專門針對西班牙語文本進行微調,在西班牙語NLI任務上表現優異
高性能句子嵌入
相比同類BETO模型,各項相似度指標提升12-16%
數據增強訓練
採用反向樣本增強技術提升模型魯棒性
模型能力
句子向量化
語義相似度計算
文本聚類
自然語言推理
使用案例
文本分析
語義搜索
構建西班牙語語義搜索引擎
可準確匹配查詢意圖相似的文檔
文本去重
識別語義相似的西班牙語文檔
有效減少冗餘內容
對話系統
意圖識別
判斷用戶查詢與預設意圖的相似度
提高對話系統理解準確率
🚀 bertin-roberta-base-finetuning-esnli
這是一個基於 sentence-transformers 的模型,在一系列西班牙語自然語言推理(NLI)任務上進行了訓練。它能將句子和段落映射到一個 768 維的密集向量空間,可用於聚類或語義搜索等任務。該模型基於 這篇論文 中的孿生網絡方法構建。
你可以在 這裡 查看該模型的演示。另外,你還能在 這裡 找到我們的另一個模型 paraphrase-spanish-distilroberta,並在 這裡 查看其演示。
🚀 快速開始
✨ 主要特性
- 基於 sentence-transformers 框架訓練,適用於西班牙語的自然語言推理任務。
- 將句子和段落映射到 768 維的密集向量空間,可用於聚類和語義搜索等任務。
- 基於孿生網絡方法構建,提升了模型性能。
📦 安裝指南
若要使用此模型,你需要安裝 sentence-transformers:
pip install -U sentence-transformers
💻 使用示例
基礎用法(Sentence-Transformers)
安裝好 sentence-transformers 後,你可以按如下方式使用該模型:
from sentence_transformers import SentenceTransformer
sentences = ["Este es un ejemplo", "Cada oración es transformada"]
model = SentenceTransformer('hackathon-pln-es/bertin-roberta-base-finetuning-esnli')
embeddings = model.encode(sentences)
print(embeddings)
高級用法(HuggingFace Transformers)
若未安裝 sentence-transformers,你可以按以下方式使用該模型:首先,將輸入數據傳入 Transformer 模型,然後對上下文詞嵌入應用合適的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('hackathon-pln-es/bertin-roberta-base-finetuning-esnli')
model = AutoModel.from_pretrained('hackathon-pln-es/bertin-roberta-base-finetuning-esnli')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 詳細文檔
評估結果
我們使用 SemEval-2015 任務 的 西班牙語數據集 對模型進行了語義文本相似度任務的評估。評估指標如下:
指標 | BETO STS | BERTIN STS(本模型) | 相對提升 |
---|---|---|---|
cosine_pearson | 0.609803 | 0.683188 | +12.03 |
cosine_spearman | 0.528776 | 0.615916 | +16.48 |
euclidean_pearson | 0.590613 | 0.672601 | +13.88 |
euclidean_spearman | 0.526529 | 0.611539 | +16.15 |
manhattan_pearson | 0.589108 | 0.672040 | +14.08 |
manhattan_spearman | 0.525910 | 0.610517 | +16.09 |
dot_pearson | 0.544078 | 0.600517 | +10.37 |
dot_spearman | 0.460427 | 0.521260 | +13.21 |
訓練
模型的訓練參數如下:
- 數據集:我們使用了一系列自然語言推理數據集作為訓練數據,包括僅西班牙語部分的 ESXNLI、自動翻譯的 SNLI 和 MultiNLI。完整的數據集可在 這裡 獲取。以下是我們用於增加訓練數據量的技巧:
for row in reader:
if row['language'] == 'es':
sent1 = row['sentence1'].strip()
sent2 = row['sentence2'].strip()
add_to_samples(sent1, sent2, row['gold_label'])
add_to_samples(sent2, sent1, row['gold_label']) #Also add the opposite
- 數據加載器:使用
sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader
,長度為 1818,參數如下:
{'batch_size': 64}
- 損失函數:使用
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
,參數如下:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
- fit() 方法的參數:
{
"epochs": 10,
"evaluation_steps": 0,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 909,
"weight_decay": 0.01
}
🔧 技術細節
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
📄 許可證
文檔未提供相關許可證信息。
👨💻 作者
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers 支持多種語言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors 英語
G
avsolatorio
945.68k
29
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98