đ mchochlov/codebert-base-cd-ft
This is a sentence-transformers model that maps code to a 768-dimensional dense vector space. It's fine-tuned for clone detection using contrastive learning on parts of BigCloneBench code.
đ Quick Start
This section will guide you through using the mchochlov/codebert-base-cd-ft
model in different ways.
⨠Features
- Maps code to a 768-dimensional dense vector space.
- Specifically fine-tuned for clone detection using contrastive learning on parts of BigCloneBench code.
đĻ Installation
If you want to use this model, you need to install sentence-transformers first:
pip install -U sentence-transformers
đģ Usage Examples
Basic Usage
If you have sentence-transformers installed, you can use the model like this:
from sentence_transformers import SentenceTransformer
code_fragments = [...]
model = SentenceTransformer('mchochlov/codebert-base-cd-ft')
embeddings = model.encode(code_fragments)
print(embeddings)
Advanced Usage
Without sentence-transformers, you can use the model as follows: First, pass your input through the transformer model, then apply the right pooling-operation on top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('mchochlov/codebert-base-cd-ft')
model = AutoModel.from_pretrained('mchochlov/codebert-base-cd-ft')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
đ Documentation
Evaluation Results
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
đ License
No license information is provided in the original README.
đ Citing & Authors
Please cite this paper if using the model.
@inproceedings{chochlov2022using,
title={Using a Nearest-Neighbour, BERT-Based Approach for Scalable Clone Detection},
author={Chochlov, Muslim and Ahmed, Gul Aftab and Patten, James Vincent and Lu, Guoxian and Hou, Wei and Gregg, David and Buckley, Jim},
booktitle={2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)},
pages={582--591},
year={2022},
organization={IEEE}
}