🚀 mchochlov/codebert-base-cd-ft
这是一个 sentence-transformers 模型,它能将代码映射到一个 768 维的密集向量空间,并且在 BigCloneBench 代码的部分数据上使用对比学习进行了专门的微调,以用于克隆检测。
🚀 快速开始
安装依赖
若要使用这个模型,你需要安装 sentence-transformers:
pip install -U sentence-transformers
基本使用
安装完成后,你可以按照以下方式使用该模型:
from sentence_transformers import SentenceTransformer
code_fragments = [...]
model = SentenceTransformer('mchochlov/codebert-base-cd-ft')
embeddings = model.encode(code_fragments)
print(embeddings)
不使用 sentence-transformers 的情况
如果你没有安装 sentence-transformers,也可以使用该模型。首先,将输入数据传入 Transformer 模型,然后对上下文词嵌入应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('mchochlov/codebert-base-cd-ft')
model = AutoModel.from_pretrained('mchochlov/codebert-base-cd-ft')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 详细文档
评估结果
若要对该模型进行自动评估,请参考 Sentence Embeddings Benchmark:https://seb.sbert.net
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用与作者
如果使用该模型,请引用以下论文:
@inproceedings{chochlov2022using,
title={Using a Nearest-Neighbour, BERT-Based Approach for Scalable Clone Detection},
author={Chochlov, Muslim and Ahmed, Gul Aftab and Patten, James Vincent and Lu, Guoxian and Hou, Wei and Gregg, David and Buckley, Jim},
booktitle={2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)},
pages={582--591},
year={2022},
organization={IEEE}
}