🚀 Mpnet-v2-MNR-Fine-Tuned
This is a sentence-transformers model that maps sentences and paragraphs to a 768-dimensional dense vector space, which can be used for tasks such as clustering or semantic search.
🚀 Quick Start
This model simplifies tasks by mapping sentences and paragraphs into a 768-dimensional dense vector space. It's highly useful for clustering and semantic search.
✨ Features
- Sentence Embedding: Maps sentences and paragraphs to a 768-dimensional dense vector space.
- Multi - task Applicability: Suitable for tasks like clustering and semantic search.
📦 Installation
Using this model becomes easy when you have sentence-transformers installed. You can install it with the following command:
pip install -U sentence-transformers
💻 Usage Examples
Basic Usage
If you have sentence-transformers installed, you can use the model as follows:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('BlazingFringe/mpnet-mnr-v2-fine-tuned')
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage
Without sentence-transformers, you can use the model in the following way. First, pass your input through the transformer model, then apply the appropriate pooling operation on top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('BlazingFringe/mpnet-mnr-v2-fine-tuned')
model = AutoModel.from_pretrained('BlazingFringe/mpnet-mnr-v2-fine-tuned')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 Documentation
Evaluation Results
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Training
The model was trained with the following parameters:
DataLoader:
sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader
of length 1009 with parameters:
{'batch_size': 32}
Loss:
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
with parameters:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
Parameters of the fit()-Method:
{
"epochs": 2,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Citing & Authors
Property |
Details |
Pipeline Tag |
sentence-similarity |
Tags |
sentence-transformers, feature-extraction, sentence-similarity, transformers |
Datasets |
anli, glue |