Sft Sql Embedding
模型介绍
内容详情
替代品
模型简介
该模型专门针对SQL查询语句进行优化,能够将SQL语句转换为高维向量表示,支持语义相似度计算、SQL查询检索等任务。
模型特点
SQL语句专用嵌入
专门针对SQL查询语句进行微调,能更好地捕捉SQL语法和语义特征
高维向量表示
将SQL语句映射到768维的密集向量空间,保留丰富的语义信息
多任务支持
可用于语义相似度计算、语义搜索、文本分类等多种下游任务
模型能力
SQL语句向量化
SQL语义相似度计算
SQL查询检索
SQL查询聚类
使用案例
数据库管理
相似SQL查询检索
在数据库查询日志中查找语义相似的SQL语句
可有效识别执行意图相似的查询
SQL查询去重
通过向量相似度检测重复或高度相似的查询
减少冗余查询分析工作
查询优化
查询模式识别
通过聚类分析识别常见查询模式
帮助优化数据库索引设计
🚀 基于sentence-transformers/all-mpnet-base-v2的句子转换器
这是一个基于 sentence-transformers 库,从 sentence-transformers/all-mpnet-base-v2 微调而来的模型。它可以将句子和段落映射到一个 768 维的密集向量空间,可用于语义文本相似度计算、语义搜索、释义挖掘、文本分类、聚类等任务。
🚀 快速开始
本模型是基于 sentence-transformers 库,从 sentence-transformers/all-mpnet-base-v2 微调得到的。它能够把句子和段落映射到 768 维的密集向量空间,可用于语义文本相似度、语义搜索、释义挖掘、文本分类、聚类等多种任务。
✨ 主要特性
- 多任务支持:可用于语义文本相似度计算、语义搜索、释义挖掘、文本分类、聚类等。
- 高维向量映射:将句子和段落映射到 768 维的密集向量空间。
📦 安装指南
首先,你需要安装 Sentence Transformers 库:
pip install -U sentence-transformers
💻 使用示例
基础用法
from sentence_transformers import SentenceTransformer
# 从 Hugging Face Hub 下载模型
model = SentenceTransformer("s2593817/sft-sql-embedding")
# 运行推理
sentences = [
'SELECT alias1.col1 FROM table1 AS alias1 JOIN table2 AS alias2 ON alias1.col2 = alias2.col2 JOIN table3 AS alias3 ON alias2.col3 = alias3.col3 WHERE alias3.col4 = str INTERSECT SELECT alias1.col1 FROM table1 AS alias1 JOIN table2 AS alias2 ON alias1.col2 = alias2.col2 JOIN table3 AS alias3 ON alias2.col3 = alias3.col3 WHERE alias3.col4 = str',
'SELECT count(col1) FROM table1 WHERE col2 = num',
'SELECT count(DISTINCT col1) FROM table1',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# 获取嵌入向量的相似度分数
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 详细文档
模型详情
模型描述
属性 | 详情 |
---|---|
模型类型 | 句子转换器 |
基础模型 | sentence-transformers/all-mpnet-base-v2 |
最大序列长度 | 384 个词元 |
输出维度 | 768 个词元 |
相似度函数 | 余弦相似度 |
模型来源
- 文档:Sentence Transformers 文档
- 仓库:GitHub 上的 Sentence Transformers
- Hugging Face:Hugging Face 上的 Sentence Transformers
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
🔧 技术细节
训练详情
训练数据集
未命名数据集
- 规模:300,000 个训练样本
- 列名:
sentence1
、sentence2
和score
- 基于前 1000 个样本的近似统计信息:
sentence1 sentence2 score 类型 字符串 字符串 浮点数 详情 - 最小值: 8 个词元
- 平均值: 38.49 个词元
- 最大值: 189 个词元
- 最小值: 7 个词元
- 平均值: 37.44 个词元
- 最大值: 153 个词元
- 最小值: 0.04
- 平均值: 0.36
- 最大值: 1.0
- 样本示例:
sentence1 sentence2 score SELECT DISTINCT count(DISTINCT alias4.col1) , alias3.col2 FROM table1 AS alias1 JOIN table2 AS alias2 ON alias1.col3 = alias2.col3 JOIN table3 AS alias3 ON alias3.col4 = alias1.col4 JOIN table4 AS alias4 ON alias3.col4 = alias4.col5 WHERE alias2.col6 = str GROUP BY alias3.col2 ORDER BY count(DISTINCT alias4.col1) DESC
SELECT count(*) FROM table1 WHERE col1 = str
0.14221014492753623
SELECT DISTINCT count(alias2.col1) FROM table1 AS alias1 JOIN table2 AS alias2 ON alias1.col2 = alias2.col2 WHERE alias1.col3 = str
SELECT alias3.col1 FROM table1 AS alias1 JOIN table2 AS alias2 ON alias1.col2 = alias2.col2 JOIN table3 AS alias3 ON alias2.col3 = alias3.col3 WHERE alias1.col4 = str AND alias1.col5 = str
0.5468686868686868
SELECT count(*) FROM table1
SELECT count(*) FROM table1 WHERE col1 LIKE str
0.6269230769230769
- 损失函数:
CoSENTLoss
,参数如下:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
训练超参数
非默认超参数
per_device_train_batch_size
: 160learning_rate
: 2e-05num_train_epochs
: 8warmup_ratio
: 0.2fp16
: Truedataloader_num_workers
: 16batch_sampler
: no_duplicates
所有超参数
点击展开
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 160per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 8max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.2warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 16dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
训练日志
点击展开
轮次 | 步数 | 训练损失 |
---|---|---|
0.0533 | 100 | 12.0379 |
0.1067 | 200 | 9.2042 |
0.16 | 300 | 8.6521 |
0.2133 | 400 | 8.5353 |
0.2667 | 500 | 8.4472 |
0.32 | 600 | 8.4105 |
0.3733 | 700 | 8.3927 |
0.4267 | 800 | 8.3553 |
0.48 | 900 | 8.3326 |
0.5333 | 1000 | 8.3168 |
0.5867 | 1100 | 8.2941 |
0.64 | 1200 | 6.0021 |
0.6933 | 1300 | 5.3802 |
0.7467 | 1400 | 5.3282 |
0.8 | 1500 | 5.2365 |
0.8533 | 1600 | 5.0198 |
0.9067 | 1700 | 4.899 |
0.96 | 1800 | 4.8887 |
1.0133 | 1900 | 4.7603 |
1.0667 | 2000 | 4.6292 |
1.12 | 2100 | 4.4811 |
1.1733 | 2200 | 4.2841 |
1.2267 | 2300 | 4.2251 |
1.28 | 2400 | 4.0261 |
1.3333 | 2500 | 3.8628 |
1.3867 | 2600 | 3.8404 |
1.44 | 2700 | 3.6471 |
1.4933 | 2800 | 3.6673 |
1.5467 | 2900 | 3.5626 |
1.6 | 3000 | 3.5391 |
1.6533 | 3100 | 3.5629 |
1.7067 | 3200 | 3.4787 |
1.76 | 3300 | 3.4401 |
1.8133 | 3400 | 3.491 |
1.8667 | 3500 | 3.3358 |
1.92 | 3600 | 3.3555 |
1.9733 | 3700 | 3.161 |
2.0267 | 3800 | 3.1708 |
2.08 | 3900 | 3.1678 |
2.1333 | 4000 | 3.1348 |
2.1867 | 4100 | 2.9159 |
2.24 | 4200 | 2.8359 |
2.2933 | 4300 | 2.8359 |
2.3467 | 4400 | 2.796 |
2.4 | 4500 | 2.8483 |
2.4533 | 4600 | 2.7774 |
2.5067 | 4700 | 2.7766 |
2.56 | 4800 | 2.7185 |
2.6133 | 4900 | 2.778 |
2.6667 | 5000 | 2.7114 |
2.72 | 5100 | 2.6623 |
2.7733 | 5200 | 2.5093 |
2.8267 | 5300 | 2.4835 |
2.88 | 5400 | 2.2851 |
2.9333 | 5500 | 2.1488 |
2.9867 | 5600 | 2.2175 |
3.04 | 5700 | 2.0813 |
3.0933 | 5800 | 2.1489 |
3.1467 | 5900 | 2.1337 |
3.2 | 6000 | 2.2258 |
3.2533 | 6100 | 2.1601 |
3.3067 | 6200 | 1.9266 |
3.36 | 6300 | 1.8427 |
3.4133 | 6400 | 1.8434 |
3.4667 | 6500 | 1.917 |
3.52 | 6600 | 1.8204 |
3.5733 | 6700 | 2.0209 |
3.6267 | 6800 | 1.7852 |
3.68 | 6900 | 1.9566 |
3.7333 | 7000 | 1.852 |
3.7867 | 7100 | 1.8562 |
3.84 | 7200 | 1.7595 |
3.8933 | 7300 | 1.4295 |
3.9467 | 7400 | 1.2669 |
4.0 | 7500 | 1.2029 |
4.0533 | 7600 | 1.3074 |
4.1067 | 7700 | 1.435 |
4.16 | 7800 | 1.5712 |
4.2133 | 7900 | 1.2366 |
4.2667 | 8000 | 1.526 |
4.32 | 8100 | 1.2565 |
4.3733 | 8200 | 1.4546 |
4.4267 | 8300 | 1.374 |
4.48 | 8400 | 1.3387 |
4.5333 | 8500 | 1.3776 |
4.5867 | 8600 | 1.3984 |
4.64 | 8700 | 1.3577 |
4.6933 | 8800 | 1.2393 |
4.7467 | 8900 | 1.4125 |
4.8 | 9000 | 1.6127 |
4.8533 | 9100 | 1.6897 |
4.9067 | 9200 | 1.1217 |
4.96 | 9300 | 1.406 |
5.0133 | 9400 | 1.4641 |
5.0667 | 9500 | 1.48 |
5.12 | 9600 | 1.3367 |
5.1733 | 9700 | 1.4681 |
5.2267 | 9800 | 1.4628 |
5.28 | 9900 | 1.32 |
5.3333 | 10000 | 1.448 |
5.3867 | 10100 | 1.2516 |
5.44 | 10200 | 1.4421 |
5.4933 | 10300 | 1.2542 |
5.5467 | 10400 | 1.4545 |
5.6 | 10500 | 1.1441 |
5.6533 | 10600 | 1.251 |
5.7067 | 10700 | 1.3396 |
5.76 | 10800 | 1.0305 |
5.8133 | 10900 | 1.0155 |
5.8667 | 11000 | 0.9871 |
5.92 | 11100 | 1.074 |
5.9733 | 11200 | 0.4534 |
6.0267 | 11300 | 0.1965 |
6.08 | 11400 | 0.1822 |
6.1333 | 11500 | 0.2101 |
6.1867 | 11600 | 0.2326 |
6.24 | 11700 | 0.4126 |
6.2933 | 11800 | 0.4871 |
6.3467 | 11900 | 0.2012 |
6.4 | 12000 | 0.2113 |
6.4533 | 12100 | 0.1788 |
6.5067 | 12200 | 0.2271 |
6.56 | 12300 | 0.1685 |
6.6133 | 12400 | 0.3347 |
6.6667 | 12500 | 0.123 |
6.72 | 12600 | 0.155 |
6.7733 | 12700 | 0.2476 |
6.8267 | 12800 | 0.1926 |
6.88 | 12900 | 0.1394 |
6.9333 | 13000 | 0.1683 |
6.9867 | 13100 | 0.2484 |
7.04 | 13200 | 0.1338 |
7.0933 | 13300 | 0.1568 |
7.1467 | 13400 | 0.1206 |
7.2 | 13500 | 0.1683 |
7.2533 | 13600 | 0.1831 |
7.3067 | 13700 | 0.3077 |
7.36 | 13800 | 0.3533 |
7.4133 | 13900 | 0.1165 |
7.4667 | 14000 | 0.2128 |
7.52 | 14100 | 0.236 |
7.5733 | 14200 | 0.3616 |
7.6267 | 14300 | 0.2989 |
7.68 | 14400 | 0.2416 |
7.7333 | 14500 | 0.2105 |
Marathisentencesimilarity
基于SBERT架构的马拉地语句子嵌入模型,可将文本映射到768维向量空间
文本嵌入
M
sangambhamare
240
1
Qwen3 Embedding 0.6B MXL 4bit
Apache-2.0
这是一个基于Qwen3-Embedding-0.6B模型转换的4位量化版本,专为MLX框架优化。
文本嵌入
Q
kerncore
128
1
Medical Embedded V4
Apache-2.0
这是一个多语言句子嵌入模型,可将句子和段落映射到768维向量空间,适用于聚类和语义搜索等任务。
文本嵌入 支持多种语言
M
shtilev
202
1
Large Fine Tuned Ihsg Sentence Bert
基于TripletLoss在10000条数据集上微调的句子相似度模型,适用于多语言文本特征提取与相似度计算
文本嵌入
L
ihsan31415
103
1
Qwen3 Embedding 8B GGUF
Apache-2.0
Qwen3-Embedding-8B 是 Qwen 家族的最新专有模型,专为文本嵌入和排序任务设计,基于 Qwen3 系列的密集基础模型构建,具有卓越的多语言能力和长文本理解能力。
文本嵌入
Q
Mungert
612
1
Nomic Embed Code GGUF
Apache-2.0
nomic-embed-code 是一款先进的代码嵌入模型,在代码检索任务中表现出色,支持多种编程语言。
文本嵌入
N
Mungert
572
1
Multilingual E5 Small Ko V2
Apache-2.0
基于intfloat/multilingual-e5-small微调的韩语句子转换器,用于韩语检索任务
文本嵌入 支持多种语言
M
dragonkue
252
2
Qwen3 Embedding 4B GGUF
Apache-2.0
Qwen3-Embedding-4B是基于Qwen3系列构建的文本嵌入模型,专为文本嵌入和排序任务设计,在多语言文本处理和代码检索等方面表现优异。
文本嵌入
Q
Mungert
723
1
Nmixx Bge M3
Apache-2.0
基于bge-m3的SentenceTransformer模型,针对韩语金融文本进行微调,支持多语言处理,优化金融领域语义相似度任务。
文本嵌入
N
nmixx-fin
101
1
Qwen3 Embedding 0.6B Onnx Uint8
Apache-2.0
这是一个基于ONNX的量化模型,是Qwen/Qwen3-Embedding-0.6B的uint8量化版本,在保持检索性能的同时减少了模型大小。
文本嵌入
Q
electroglyph
112
8
精选推荐AI模型
Qwen2.5 VL 7B Abliterated Caption It I1 GGUF
Apache-2.0
Qwen2.5-VL-7B-Abliterated-Caption-it的量化版本,支持多语言图像描述任务。
图像生成文本
Transformers 支持多种语言

Q
mradermacher
167
1
Nunchaku Flux.1 Dev Colossus
其他
Colossus Project Flux 的 Nunchaku 量化版本,旨在根据文本提示生成高质量图像。该模型在优化推理效率的同时,将性能损失降至最低。
图像生成 英语
N
nunchaku-tech
235
3
Qwen2.5 VL 7B Abliterated Caption It GGUF
Apache-2.0
这是一个基于Qwen2.5-VL-7B模型的静态量化版本,专注于图像描述生成任务,支持多种语言。
图像生成文本
Transformers 支持多种语言

Q
mradermacher
133
1
Olmocr 7B 0725 FP8
Apache-2.0
olmOCR-7B-0725-FP8是基于Qwen2.5-VL-7B-Instruct模型,使用olmOCR-mix-0225数据集微调后量化为FP8版本的文档OCR模型。
图像生成文本
Transformers 英语

O
allenai
881
3
Lucy 128k GGUF
Apache-2.0
Lucy-128k是基于Qwen3-1.7B开发的专注于代理式网络搜索和轻量级浏览的模型,在移动设备上也能高效运行。
大型语言模型
Transformers 英语

L
Mungert
263
2