Qwen3 Embedding 0.6B Onnx Uint8
这是一个基于ONNX的量化模型,是Qwen/Qwen3-Embedding-0.6B的uint8量化版本,在保持检索性能的同时减少了模型大小。
下载量 112
发布时间 : 6/8/2025
模型简介
该模型是一个文本嵌入模型,用于生成文本的向量表示,适用于信息检索、语义搜索等任务。
模型特点
高效量化
采用uint8量化技术,显著减少模型大小,同时保持检索性能。
高性能
与完整f32模型相比,检索性能差异仅约1%。
兼容性
与qdrant fastembed兼容,便于在相关环境中部署使用。
优化量化策略
通过排除484个敏感节点不进行量化,在模型大小和准确率之间取得良好平衡。
模型能力
文本向量化
语义搜索
信息检索
使用案例
信息检索
文档搜索
将文档转换为向量表示,实现基于语义的文档搜索。
推荐系统
内容推荐
通过内容向量相似度实现个性化推荐。
🚀 Qwen3-Embedding-0.6B-onnx-uint8
这是一个基于ONNX的量化模型,是 Qwen/Qwen3-Embedding-0.6B 的uint8量化版本。该模型在保持一定检索性能的同时,减少了模型大小,并且与qdrant fastembed兼容。
🚀 快速开始
本模型已经过动态量化为uint8,并进一步修改以输出一个uint8的1024维张量。使用时请注意以下细节:
- 执行模型时不进行池化和归一化操作。
- 注意以下代码中的示例查询格式。
✨ 主要特性
模型优化
- 提升了模型质量,但模型大小从571MiB增加到624MiB。
- 与完整的f32模型相比,检索性能差异仅约1%。
- 与onnx-community uint8模型(f32输出)相比,检索准确率提高了约6%。
- 与该模型的上一版本相比,检索准确率提高了约3.5%。
- 在我的硬件(Ryzen CPU)上,推理速度与上一版本相同。
兼容性
本模型与qdrant fastembed兼容,可在相关环境中使用。
🔧 技术细节
量化方法
为了辅助量化,创建了一个小型的ONNX模型检测框架。具体步骤如下:
- 生成校准数据:生成校准数据,并创建一个带检测功能的ONNX模型,记录推理过程中模型中每个张量的值范围。
- 节点筛选:测试不同的节点排除标准,最终选择了一个在模型大小和准确率之间取得良好平衡的方案,排除了484个最敏感的节点不进行量化。
- 再次校准:生成100万个标记的校准数据,并记录推理过程中看到的float32输出范围,范围为 -0.3009805381298065 到 0.3952634334564209。
- 量化转换:使用该范围进行从float32到uint8的非对称线性量化。
排除的节点
以下是排除量化的节点列表:
排除的节点列表
["/0/auto_model/ConstantOfShape",
"/0/auto_model/Constant_28",
"/0/auto_model/layers.25/post_attention_layernorm/Pow",
"/0/auto_model/layers.26/input_layernorm/Pow",
"/0/auto_model/layers.25/input_layernorm/Pow",
"/0/auto_model/layers.24/post_attention_layernorm/Pow",
"/0/auto_model/layers.24/input_layernorm/Pow",
"/0/auto_model/layers.23/post_attention_layernorm/Pow",
"/0/auto_model/layers.23/input_layernorm/Pow",
"/0/auto_model/layers.22/post_attention_layernorm/Pow",
"/0/auto_model/layers.22/input_layernorm/Pow",
"/0/auto_model/layers.3/input_layernorm/Pow",
"/0/auto_model/layers.4/input_layernorm/Pow",
"/0/auto_model/layers.3/post_attention_layernorm/Pow",
"/0/auto_model/layers.21/post_attention_layernorm/Pow",
"/0/auto_model/layers.5/input_layernorm/Pow",
"/0/auto_model/layers.4/post_attention_layernorm/Pow",
"/0/auto_model/layers.5/post_attention_layernorm/Pow",
"/0/auto_model/layers.6/input_layernorm/Pow",
"/0/auto_model/layers.6/post_attention_layernorm/Pow",
"/0/auto_model/layers.7/input_layernorm/Pow",
"/0/auto_model/layers.8/input_layernorm/Pow",
"/0/auto_model/layers.7/post_attention_layernorm/Pow",
"/0/auto_model/layers.26/post_attention_layernorm/Pow",
"/0/auto_model/layers.9/input_layernorm/Pow",
"/0/auto_model/layers.8/post_attention_layernorm/Pow",
"/0/auto_model/layers.21/input_layernorm/Pow",
"/0/auto_model/layers.20/post_attention_layernorm/Pow",
"/0/auto_model/layers.9/post_attention_layernorm/Pow",
"/0/auto_model/layers.10/input_layernorm/Pow",
"/0/auto_model/layers.20/input_layernorm/Pow",
"/0/auto_model/layers.11/input_layernorm/Pow",
"/0/auto_model/layers.10/post_attention_layernorm/Pow",
"/0/auto_model/layers.12/input_layernorm/Pow",
"/0/auto_model/layers.11/post_attention_layernorm/Pow",
"/0/auto_model/layers.12/post_attention_layernorm/Pow",
"/0/auto_model/layers.13/input_layernorm/Pow",
"/0/auto_model/layers.19/post_attention_layernorm/Pow",
"/0/auto_model/layers.13/post_attention_layernorm/Pow",
"/0/auto_model/layers.14/input_layernorm/Pow",
"/0/auto_model/layers.19/input_layernorm/Pow",
"/0/auto_model/layers.18/post_attention_layernorm/Pow",
"/0/auto_model/layers.14/post_attention_layernorm/Pow",
"/0/auto_model/layers.15/input_layernorm/Pow",
"/0/auto_model/layers.16/input_layernorm/Pow",
"/0/auto_model/layers.15/post_attention_layernorm/Pow",
"/0/auto_model/layers.18/input_layernorm/Pow",
"/0/auto_model/layers.17/post_attention_layernorm/Pow",
"/0/auto_model/layers.17/input_layernorm/Pow",
"/0/auto_model/layers.16/post_attention_layernorm/Pow",
"/0/auto_model/layers.27/post_attention_layernorm/Pow",
"/0/auto_model/layers.27/input_layernorm/Pow",
"/0/auto_model/norm/Pow",
"/0/auto_model/layers.25/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.25/post_attention_layernorm/Add",
"/0/auto_model/layers.26/input_layernorm/Add",
"/0/auto_model/layers.26/input_layernorm/ReduceMean",
"/0/auto_model/layers.25/input_layernorm/ReduceMean",
"/0/auto_model/layers.25/input_layernorm/Add",
"/0/auto_model/layers.24/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.24/post_attention_layernorm/Add",
"/0/auto_model/layers.24/input_layernorm/Add",
"/0/auto_model/layers.24/input_layernorm/ReduceMean",
"/0/auto_model/layers.23/post_attention_layernorm/Add",
"/0/auto_model/layers.23/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.23/input_layernorm/ReduceMean",
"/0/auto_model/layers.23/input_layernorm/Add",
"/0/auto_model/layers.22/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.22/post_attention_layernorm/Add",
"/0/auto_model/layers.26/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.26/post_attention_layernorm/Add",
"/0/auto_model/layers.22/input_layernorm/ReduceMean",
"/0/auto_model/layers.22/input_layernorm/Add",
"/0/auto_model/layers.3/input_layernorm/Add",
"/0/auto_model/layers.3/input_layernorm/ReduceMean",
"/0/auto_model/layers.21/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.21/post_attention_layernorm/Add",
"/0/auto_model/layers.4/input_layernorm/Add",
"/0/auto_model/layers.4/input_layernorm/ReduceMean",
"/0/auto_model/layers.3/post_attention_layernorm/Add",
"/0/auto_model/layers.3/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.5/input_layernorm/Add",
"/0/auto_model/layers.5/input_layernorm/ReduceMean",
"/0/auto_model/layers.4/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.4/post_attention_layernorm/Add",
"/0/auto_model/layers.5/post_attention_layernorm/Add",
"/0/auto_model/layers.5/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.6/input_layernorm/Add",
"/0/auto_model/layers.6/input_layernorm/ReduceMean",
"/0/auto_model/layers.6/post_attention_layernorm/Add",
"/0/auto_model/layers.6/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.7/input_layernorm/Add",
"/0/auto_model/layers.7/input_layernorm/ReduceMean",
"/0/auto_model/layers.8/input_layernorm/ReduceMean",
"/0/auto_model/layers.8/input_layernorm/Add",
"/0/auto_model/layers.7/post_attention_layernorm/Add",
"/0/auto_model/layers.7/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.9/input_layernorm/Add",
"/0/auto_model/layers.9/input_layernorm/ReduceMean",
"/0/auto_model/layers.8/post_attention_layernorm/Add",
"/0/auto_model/layers.8/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.21/input_layernorm/Add",
"/0/auto_model/layers.21/input_layernorm/ReduceMean",
"/0/auto_model/layers.20/post_attention_layernorm/Add",
"/0/auto_model/layers.20/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.9/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.9/post_attention_layernorm/Add",
"/0/auto_model/layers.10/input_layernorm/ReduceMean",
"/0/auto_model/layers.10/input_layernorm/Add",
"/0/auto_model/layers.20/input_layernorm/Add",
"/0/auto_model/layers.20/input_layernorm/ReduceMean",
"/0/auto_model/layers.11/input_layernorm/ReduceMean",
"/0/auto_model/layers.11/input_layernorm/Add",
"/0/auto_model/layers.10/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.10/post_attention_layernorm/Add",
"/0/auto_model/layers.12/input_layernorm/ReduceMean",
"/0/auto_model/layers.12/input_layernorm/Add",
"/0/auto_model/layers.11/post_attention_layernorm/Add",
"/0/auto_model/layers.11/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.12/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.12/post_attention_layernorm/Add",
"/0/auto_model/layers.13/input_layernorm/Add",
"/0/auto_model/layers.13/input_layernorm/ReduceMean",
"/0/auto_model/layers.19/post_attention_layernorm/Add",
"/0/auto_model/layers.19/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.13/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.13/post_attention_layernorm/Add",
"/0/auto_model/layers.14/input_layernorm/Add",
"/0/auto_model/layers.14/input_layernorm/ReduceMean",
"/0/auto_model/layers.19/input_layernorm/ReduceMean",
"/0/auto_model/layers.19/input_layernorm/Add",
"/0/auto_model/layers.18/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.18/post_attention_layernorm/Add",
"/0/auto_model/layers.14/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.14/post_attention_layernorm/Add",
"/0/auto_model/layers.15/input_layernorm/ReduceMean",
"/0/auto_model/layers.15/input_layernorm/Add",
"/0/auto_model/layers.16/input_layernorm/Add",
"/0/auto_model/layers.16/input_layernorm/ReduceMean",
"/0/auto_model/layers.15/post_attention_layernorm/Add",
"/0/auto_model/layers.15/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.18/input_layernorm/Add",
"/0/auto_model/layers.18/input_layernorm/ReduceMean",
"/0/auto_model/layers.17/post_attention_layernorm/Add",
"/0/auto_model/layers.17/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.17/input_layernorm/ReduceMean",
"/0/auto_model/layers.17/input_layernorm/Add",
"/0/auto_model/layers.16/post_attention_layernorm/Add",
"/0/auto_model/layers.16/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.27/post_attention_layernorm/Add",
"/0/auto_model/layers.27/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.27/input_layernorm/Add",
"/0/auto_model/layers.27/input_layernorm/ReduceMean",
"/0/auto_model/layers.27/self_attn/q_norm/Pow",
"/0/auto_model/layers.14/self_attn/k_norm/Pow",
"/0/auto_model/layers.26/self_attn/q_norm/Pow",
"/0/auto_model/layers.25/self_attn/q_norm/Pow",
"/0/auto_model/layers.26/self_attn/k_norm/Pow",
"/0/auto_model/layers.8/self_attn/k_norm/Pow",
"/0/auto_model/layers.24/self_attn/k_norm/Pow",
"/0/auto_model/layers.24/self_attn/q_norm/Pow",
"/0/auto_model/layers.25/self_attn/k_norm/Pow",
"/0/auto_model/layers.23/self_attn/q_norm/Pow",
"/0/auto_model/layers.27/self_attn/k_norm/Pow",
"/0/auto_model/layers.12/self_attn/k_norm/Pow",
"/0/auto_model/layers.13/self_attn/k_norm/Pow",
"/0/auto_model/layers.2/mlp/down_proj/MatMul",
"/0/auto_model/layers.3/post_attention_layernorm/Cast",
"/0/auto_model/layers.3/Add",
"/0/auto_model/layers.3/Add_1",
"/0/auto_model/layers.4/input_layernorm/Cast",
"/0/auto_model/layers.3/input_layernorm/Cast",
"/0/auto_model/layers.2/Add_1",
"/0/auto_model/layers.4/Add",
"/0/auto_model/layers.4/post_attention_layernorm/Cast",
"/0/auto_model/layers.5/input_layernorm/Cast",
"/0/auto_model/layers.4/Add_1",
"/0/auto_model/layers.5/post_attention_layernorm/Cast",
"/0/auto_model/layers.5/Add",
"/0/auto_model/layers.5/Add_1",
"/0/auto_model/layers.6/input_layernorm/Cast",
"/0/auto_model/layers.7/Add_1",
"/0/auto_model/layers.8/input_layernorm/Cast",
"/0/auto_model/layers.7/Add",
"/0/auto_model/layers.7/post_attention_layernorm/Cast",
"/0/auto_model/layers.6/Add",
"/0/auto_model/layers.6/post_attention_layernorm/Cast",
"/0/auto_model/layers.6/Add_1",
"/0/auto_model/layers.7/input_layernorm/Cast",
"/0/auto_model/layers.8/Add",
"/0/auto_model/layers.8/post_attention_layernorm/Cast",
"/0/auto_model/layers.9/input_layernorm/Cast",
"/0/auto_model/layers.8/Add_1",
"/0/auto_model/layers.9/post_attention_layernorm/Cast",
"/0/auto_model/layers.9/Add",
"/0/auto_model/layers.9/Add_1",
"/0/auto_model/layers.10/input_layernorm/Cast",
"/0/auto_model/layers.11/input_layernorm/Cast",
"/0/auto_model/layers.10/Add_1",
"/0/auto_model/layers.10/Add",
"/0/auto_model/layers.10/post_attention_layernorm/Cast",
"/0/auto_model/layers.11/Add",
"/0/auto_model/layers.11/post_attention_layernorm/Cast",
"/0/auto_model/layers.11/Add_1",
"/0/auto_model/layers.12/input_layernorm/Cast",
"/0/auto_model/layers.12/Add",
"/0/auto_model/layers.12/post_attention_layernorm/Cast",
"/0/auto_model/layers.12/Add_1",
"/0/auto_model/layers.13/input_layernorm/Cast",
"/0/auto_model/layers.13/Add",
"/0/auto_model/layers.13/post_attention_layernorm/Cast",
"/0/auto_model/layers.14/input_layernorm/Cast",
"/0/auto_model/layers.13/Add_1",
"/0/auto_model/layers.14/Add_1",
"/0/auto_model/layers.15/input_layernorm/Cast",
"/0/auto_model/layers.14/post_attention_layernorm/Cast",
"/0/auto_model/layers.14/Add",
"/0/auto_model/layers.15/post_attention_layernorm/Cast",
"/0/auto_model/layers.15/Add_1",
"/0/auto_model/layers.16/input_layernorm/Cast",
"/0/auto_model/layers.15/Add",
"/0/auto_model/layers.17/input_layernorm/Cast",
"/0/auto_model/layers.16/Add_1",
"/0/auto_model/layers.16/Add",
"/0/auto_model/layers.16/post_attention_layernorm/Cast",
"/0/auto_model/layers.19/input_layernorm/Cast",
"/0/auto_model/layers.18/Add_1",
"/0/auto_model/layers.18/input_layernorm/Cast",
"/0/auto_model/layers.17/Add_1",
"/0/auto_model/layers.17/Add",
"/0/auto_model/layers.17/post_attention_layernorm/Cast",
"/0/auto_model/layers.18/post_attention_layernorm/Cast",
"/0/auto_model/layers.18/Add",
"/0/auto_model/layers.19/Add",
"/0/auto_model/layers.19/post_attention_layernorm/Cast",
"/0/auto_model/layers.22/Add_1",
"/0/auto_model/layers.23/input_layernorm/Cast",
"/0/auto_model/layers.20/Add_1",
"/0/auto_model/layers.21/input_layernorm/Cast",
"/0/auto_model/layers.21/Add_1",
"/0/auto_model/layers.22/input_layernorm/Cast",
"/0/auto_model/layers.19/Add_1",
"/0/auto_model/layers.20/input_layernorm/Cast",
"/0/auto_model/layers.24/input_layernorm/Cast",
"/0/auto_model/layers.23/Add_1",
"/0/auto_model/layers.22/Add",
"/0/auto_model/layers.22/post_attention_layernorm/Cast",
"/0/auto_model/layers.21/Add",
"/0/auto_model/layers.21/post_attention_layernorm/Cast",
"/0/auto_model/layers.20/Add",
"/0/auto_model/layers.20/post_attention_layernorm/Cast",
"/0/auto_model/layers.23/post_attention_layernorm/Cast",
"/0/auto_model/layers.23/Add",
"/0/auto_model/layers.25/input_layernorm/Cast",
"/0/auto_model/layers.24/Add_1",
"/0/auto_model/layers.24/post_attention_layernorm/Cast",
"/0/auto_model/layers.24/Add",
"/0/auto_model/layers.25/Add",
"/0/auto_model/layers.25/post_attention_layernorm/Cast",
"/0/auto_model/layers.25/Add_1",
"/0/auto_model/layers.26/input_layernorm/Cast",
"/0/auto_model/layers.26/Add",
"/0/auto_model/layers.26/post_attention_layernorm/Cast",
"/0/auto_model/layers.21/self_attn/q_norm/Pow",
"/0/auto_model/layers.26/Add_1",
"/0/auto_model/layers.27/input_layernorm/Cast",
"/0/auto_model/layers.27/Add",
"/0/auto_model/layers.27/post_attention_layernorm/Cast",
"/0/auto_model/norm/Add",
"/0/auto_model/norm/ReduceMean",
"/0/auto_model/layers.23/self_attn/k_norm/Pow",
"/0/auto_model/layers.21/self_attn/k_norm/Pow",
"/0/auto_model/layers.22/self_attn/k_norm/Pow",
"/0/auto_model/layers.10/self_attn/k_norm/Pow",
"/0/auto_model/layers.19/self_attn/q_norm/Pow",
"/0/auto_model/layers.2/mlp/Mul",
"/0/auto_model/layers.22/self_attn/q_norm/Pow",
"/0/auto_model/layers.11/self_attn/k_norm/Pow",
"/0/auto_model/layers.20/self_attn/q_norm/Pow",
"/0/auto_model/layers.20/self_attn/k_norm/Pow",
"/0/auto_model/layers.18/self_attn/q_norm/Pow",
"/0/auto_model/layers.17/self_attn/q_norm/Pow",
"/0/auto_model/layers.27/mlp/down_proj/MatMul",
"/0/auto_model/layers.19/self_attn/k_norm/Pow",
"/0/auto_model/layers.27/Add_1",
"/0/auto_model/norm/Cast",
"/0/auto_model/layers.16/self_attn/k_norm/Pow",
"/0/auto_model/layers.18/self_attn/k_norm/Pow",
"/0/auto_model/layers.11/self_attn/q_norm/Pow",
"/0/auto_model/layers.9/self_attn/q_norm/Pow",
"/0/auto_model/layers.26/self_attn/q_norm/Add",
"/0/auto_model/layers.26/self_attn/q_norm/ReduceMean",
"/0/auto_model/layers.14/self_attn/k_norm/Add",
"/0/auto_model/layers.14/self_attn/k_norm/ReduceMean",
"/0/auto_model/layers.16/self_attn/q_norm/Pow",
"/0/auto_model/layers.27/mlp/Mul",
"/0/auto_model/layers.27/self_attn/q_norm/ReduceMean",
"/0/auto_model/layers.27/self_attn/q_norm/Add",
"/0/auto_model/layers.9/self_attn/k_norm/Pow",
"/0/auto_model/layers.17/self_attn/k_norm/Pow",
"/0/auto_model/layers.26/self_attn/k_norm/ReduceMean",
"/0/auto_model/layers.26/self_attn/k_norm/Add",
"/0/auto_model/layers.25/self_attn/k_norm/Add",
"/0/auto_model/layers.25/self_attn/k_norm/ReduceMean",
"/0/auto_model/layers.13/self_attn/k_norm/Add",
"/0/auto_model/layers.13/self_attn/k_norm/ReduceMean",
"/0/auto_model/layers.10/self_attn/q_norm/Pow",
"/0/auto_model/layers.25/input_layernorm/Mul_1",
"/0/auto_model/layers.27/self_attn/k_norm/ReduceMean",
"/0/auto_model/layers.27/self_attn/k_norm/Add",
"/0/auto_model/layers.26/input_layernorm/Mul_1",
"/0/auto_model/layers.15/self_attn/q_norm/Pow",
"/0/auto_model/layers.12/self_attn/k_norm/Add",
"/0/auto_model/layers.12/self_attn/k_norm/ReduceMean",
"/0/auto_model/layers.25/self_attn/q_norm/Add",
"/0/auto_model/layers.25/self_attn/q_norm/ReduceMean",
"/0/auto_model/layers.24/input_layernorm/Mul_1",
"/0/auto_model/layers.12/self_attn/q_norm/Pow",
"/0/auto_model/layers.24/self_attn/q_norm/ReduceMean",
"/0/auto_model/layers.24/self_attn/q_norm/Add",
"/0/auto_model/layers.24/self_attn/k_norm/ReduceMean",
"/0/auto_model/layers.24/self_attn/k_norm/Add",
"/0/auto_model/layers.22/mlp/Mul",
"/0/auto_model/layers.2/post_attention_layernorm/Pow",
"/0/auto_model/layers.23/mlp/Mul",
"/0/auto_model/layers.24/mlp/Mul",
"/0/auto_model/layers.23/input_layernorm/Mul_1",
"/0/auto_model/layers.14/self_attn/q_norm/Pow",
"/0/auto_model/layers.14/self_attn/k_proj/MatMul",
"/0/auto_model/layers.14/self_attn/k_norm/Cast",
"/0/auto_model/layers.14/self_attn/Reshape_1",
"/0/auto_model/layers.21/mlp/Mul",
"/0/auto_model/layers.3/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.3/input_layernorm/Sqrt",
"/0/auto_model/layers.4/input_layernorm/Sqrt",
"/0/auto_model/layers.5/input_layernorm/Sqrt",
"/0/auto_model/layers.4/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.5/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.6/input_layernorm/Sqrt",
"/0/auto_model/layers.6/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.8/input_layernorm/Sqrt",
"/0/auto_model/layers.8/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.7/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.7/input_layernorm/Sqrt",
"/0/auto_model/layers.9/input_layernorm/Sqrt",
"/0/auto_model/layers.10/input_layernorm/Sqrt",
"/0/auto_model/layers.9/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.11/input_layernorm/Sqrt",
"/0/auto_model/layers.10/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.12/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.11/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.12/input_layernorm/Sqrt",
"/0/auto_model/layers.13/input_layernorm/Sqrt",
"/0/auto_model/layers.14/input_layernorm/Sqrt",
"/0/auto_model/layers.13/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.15/input_layernorm/Sqrt",
"/0/auto_model/layers.14/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.16/input_layernorm/Sqrt",
"/0/auto_model/layers.15/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.17/input_layernorm/Sqrt",
"/0/auto_model/layers.16/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.19/input_layernorm/Sqrt",
"/0/auto_model/layers.17/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.18/input_layernorm/Sqrt",
"/0/auto_model/layers.18/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.19/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.23/input_layernorm/Sqrt",
"/0/auto_model/layers.20/input_layernorm/Sqrt",
"/0/auto_model/layers.21/input_layernorm/Sqrt",
"/0/auto_model/layers.22/input_layernorm/Sqrt",
"/0/auto_model/layers.22/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.24/input_layernorm/Sqrt",
"/0/auto_model/layers.20/post_attention_layernorm/Sqrt",
📄 许可证
本项目采用Apache 2.0许可证。
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98