Qwen3 Embedding 0.6B Onnx Uint8
這是一個基於ONNX的量化模型,是Qwen/Qwen3-Embedding-0.6B的uint8量化版本,在保持檢索性能的同時減少了模型大小。
下載量 112
發布時間 : 6/8/2025
模型概述
該模型是一個文本嵌入模型,用於生成文本的向量表示,適用於信息檢索、語義搜索等任務。
模型特點
高效量化
採用uint8量化技術,顯著減少模型大小,同時保持檢索性能。
高性能
與完整f32模型相比,檢索性能差異僅約1%。
兼容性
與qdrant fastembed兼容,便於在相關環境中部署使用。
優化量化策略
通過排除484個敏感節點不進行量化,在模型大小和準確率之間取得良好平衡。
模型能力
文本向量化
語義搜索
信息檢索
使用案例
信息檢索
文檔搜索
將文檔轉換為向量表示,實現基於語義的文檔搜索。
推薦系統
內容推薦
通過內容向量相似度實現個性化推薦。
🚀 Qwen3-Embedding-0.6B-onnx-uint8
這是一個基於ONNX的量化模型,是 Qwen/Qwen3-Embedding-0.6B 的uint8量化版本。該模型在保持一定檢索性能的同時,減少了模型大小,並且與qdrant fastembed兼容。
🚀 快速開始
本模型已經過動態量化為uint8,並進一步修改以輸出一個uint8的1024維張量。使用時請注意以下細節:
- 執行模型時不進行池化和歸一化操作。
- 注意以下代碼中的示例查詢格式。
✨ 主要特性
模型優化
- 提升了模型質量,但模型大小從571MiB增加到624MiB。
- 與完整的f32模型相比,檢索性能差異僅約1%。
- 與onnx-community uint8模型(f32輸出)相比,檢索準確率提高了約6%。
- 與該模型的上一版本相比,檢索準確率提高了約3.5%。
- 在我的硬件(Ryzen CPU)上,推理速度與上一版本相同。
兼容性
本模型與qdrant fastembed兼容,可在相關環境中使用。
🔧 技術細節
量化方法
為了輔助量化,創建了一個小型的ONNX模型檢測框架。具體步驟如下:
- 生成校準數據:生成校準數據,並創建一個帶檢測功能的ONNX模型,記錄推理過程中模型中每個張量的值範圍。
- 節點篩選:測試不同的節點排除標準,最終選擇了一個在模型大小和準確率之間取得良好平衡的方案,排除了484個最敏感的節點不進行量化。
- 再次校準:生成100萬個標記的校準數據,並記錄推理過程中看到的float32輸出範圍,範圍為 -0.3009805381298065 到 0.3952634334564209。
- 量化轉換:使用該範圍進行從float32到uint8的非對稱線性量化。
排除的節點
以下是排除量化的節點列表:
排除的節點列表
["/0/auto_model/ConstantOfShape",
"/0/auto_model/Constant_28",
"/0/auto_model/layers.25/post_attention_layernorm/Pow",
"/0/auto_model/layers.26/input_layernorm/Pow",
"/0/auto_model/layers.25/input_layernorm/Pow",
"/0/auto_model/layers.24/post_attention_layernorm/Pow",
"/0/auto_model/layers.24/input_layernorm/Pow",
"/0/auto_model/layers.23/post_attention_layernorm/Pow",
"/0/auto_model/layers.23/input_layernorm/Pow",
"/0/auto_model/layers.22/post_attention_layernorm/Pow",
"/0/auto_model/layers.22/input_layernorm/Pow",
"/0/auto_model/layers.3/input_layernorm/Pow",
"/0/auto_model/layers.4/input_layernorm/Pow",
"/0/auto_model/layers.3/post_attention_layernorm/Pow",
"/0/auto_model/layers.21/post_attention_layernorm/Pow",
"/0/auto_model/layers.5/input_layernorm/Pow",
"/0/auto_model/layers.4/post_attention_layernorm/Pow",
"/0/auto_model/layers.5/post_attention_layernorm/Pow",
"/0/auto_model/layers.6/input_layernorm/Pow",
"/0/auto_model/layers.6/post_attention_layernorm/Pow",
"/0/auto_model/layers.7/input_layernorm/Pow",
"/0/auto_model/layers.8/input_layernorm/Pow",
"/0/auto_model/layers.7/post_attention_layernorm/Pow",
"/0/auto_model/layers.26/post_attention_layernorm/Pow",
"/0/auto_model/layers.9/input_layernorm/Pow",
"/0/auto_model/layers.8/post_attention_layernorm/Pow",
"/0/auto_model/layers.21/input_layernorm/Pow",
"/0/auto_model/layers.20/post_attention_layernorm/Pow",
"/0/auto_model/layers.9/post_attention_layernorm/Pow",
"/0/auto_model/layers.10/input_layernorm/Pow",
"/0/auto_model/layers.20/input_layernorm/Pow",
"/0/auto_model/layers.11/input_layernorm/Pow",
"/0/auto_model/layers.10/post_attention_layernorm/Pow",
"/0/auto_model/layers.12/input_layernorm/Pow",
"/0/auto_model/layers.11/post_attention_layernorm/Pow",
"/0/auto_model/layers.12/post_attention_layernorm/Pow",
"/0/auto_model/layers.13/input_layernorm/Pow",
"/0/auto_model/layers.19/post_attention_layernorm/Pow",
"/0/auto_model/layers.13/post_attention_layernorm/Pow",
"/0/auto_model/layers.14/input_layernorm/Pow",
"/0/auto_model/layers.19/input_layernorm/Pow",
"/0/auto_model/layers.18/post_attention_layernorm/Pow",
"/0/auto_model/layers.14/post_attention_layernorm/Pow",
"/0/auto_model/layers.15/input_layernorm/Pow",
"/0/auto_model/layers.16/input_layernorm/Pow",
"/0/auto_model/layers.15/post_attention_layernorm/Pow",
"/0/auto_model/layers.18/input_layernorm/Pow",
"/0/auto_model/layers.17/post_attention_layernorm/Pow",
"/0/auto_model/layers.17/input_layernorm/Pow",
"/0/auto_model/layers.16/post_attention_layernorm/Pow",
"/0/auto_model/layers.27/post_attention_layernorm/Pow",
"/0/auto_model/layers.27/input_layernorm/Pow",
"/0/auto_model/norm/Pow",
"/0/auto_model/layers.25/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.25/post_attention_layernorm/Add",
"/0/auto_model/layers.26/input_layernorm/Add",
"/0/auto_model/layers.26/input_layernorm/ReduceMean",
"/0/auto_model/layers.25/input_layernorm/ReduceMean",
"/0/auto_model/layers.25/input_layernorm/Add",
"/0/auto_model/layers.24/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.24/post_attention_layernorm/Add",
"/0/auto_model/layers.24/input_layernorm/Add",
"/0/auto_model/layers.24/input_layernorm/ReduceMean",
"/0/auto_model/layers.23/post_attention_layernorm/Add",
"/0/auto_model/layers.23/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.23/input_layernorm/ReduceMean",
"/0/auto_model/layers.23/input_layernorm/Add",
"/0/auto_model/layers.22/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.22/post_attention_layernorm/Add",
"/0/auto_model/layers.26/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.26/post_attention_layernorm/Add",
"/0/auto_model/layers.22/input_layernorm/ReduceMean",
"/0/auto_model/layers.22/input_layernorm/Add",
"/0/auto_model/layers.3/input_layernorm/Add",
"/0/auto_model/layers.3/input_layernorm/ReduceMean",
"/0/auto_model/layers.21/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.21/post_attention_layernorm/Add",
"/0/auto_model/layers.4/input_layernorm/Add",
"/0/auto_model/layers.4/input_layernorm/ReduceMean",
"/0/auto_model/layers.3/post_attention_layernorm/Add",
"/0/auto_model/layers.3/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.5/input_layernorm/Add",
"/0/auto_model/layers.5/input_layernorm/ReduceMean",
"/0/auto_model/layers.4/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.4/post_attention_layernorm/Add",
"/0/auto_model/layers.5/post_attention_layernorm/Add",
"/0/auto_model/layers.5/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.6/input_layernorm/Add",
"/0/auto_model/layers.6/input_layernorm/ReduceMean",
"/0/auto_model/layers.6/post_attention_layernorm/Add",
"/0/auto_model/layers.6/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.7/input_layernorm/Add",
"/0/auto_model/layers.7/input_layernorm/ReduceMean",
"/0/auto_model/layers.8/input_layernorm/ReduceMean",
"/0/auto_model/layers.8/input_layernorm/Add",
"/0/auto_model/layers.7/post_attention_layernorm/Add",
"/0/auto_model/layers.7/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.9/input_layernorm/Add",
"/0/auto_model/layers.9/input_layernorm/ReduceMean",
"/0/auto_model/layers.8/post_attention_layernorm/Add",
"/0/auto_model/layers.8/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.21/input_layernorm/Add",
"/0/auto_model/layers.21/input_layernorm/ReduceMean",
"/0/auto_model/layers.20/post_attention_layernorm/Add",
"/0/auto_model/layers.20/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.9/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.9/post_attention_layernorm/Add",
"/0/auto_model/layers.10/input_layernorm/ReduceMean",
"/0/auto_model/layers.10/input_layernorm/Add",
"/0/auto_model/layers.20/input_layernorm/Add",
"/0/auto_model/layers.20/input_layernorm/ReduceMean",
"/0/auto_model/layers.11/input_layernorm/ReduceMean",
"/0/auto_model/layers.11/input_layernorm/Add",
"/0/auto_model/layers.10/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.10/post_attention_layernorm/Add",
"/0/auto_model/layers.12/input_layernorm/ReduceMean",
"/0/auto_model/layers.12/input_layernorm/Add",
"/0/auto_model/layers.11/post_attention_layernorm/Add",
"/0/auto_model/layers.11/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.12/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.12/post_attention_layernorm/Add",
"/0/auto_model/layers.13/input_layernorm/Add",
"/0/auto_model/layers.13/input_layernorm/ReduceMean",
"/0/auto_model/layers.19/post_attention_layernorm/Add",
"/0/auto_model/layers.19/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.13/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.13/post_attention_layernorm/Add",
"/0/auto_model/layers.14/input_layernorm/Add",
"/0/auto_model/layers.14/input_layernorm/ReduceMean",
"/0/auto_model/layers.19/input_layernorm/ReduceMean",
"/0/auto_model/layers.19/input_layernorm/Add",
"/0/auto_model/layers.18/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.18/post_attention_layernorm/Add",
"/0/auto_model/layers.14/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.14/post_attention_layernorm/Add",
"/0/auto_model/layers.15/input_layernorm/ReduceMean",
"/0/auto_model/layers.15/input_layernorm/Add",
"/0/auto_model/layers.16/input_layernorm/Add",
"/0/auto_model/layers.16/input_layernorm/ReduceMean",
"/0/auto_model/layers.15/post_attention_layernorm/Add",
"/0/auto_model/layers.15/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.18/input_layernorm/Add",
"/0/auto_model/layers.18/input_layernorm/ReduceMean",
"/0/auto_model/layers.17/post_attention_layernorm/Add",
"/0/auto_model/layers.17/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.17/input_layernorm/ReduceMean",
"/0/auto_model/layers.17/input_layernorm/Add",
"/0/auto_model/layers.16/post_attention_layernorm/Add",
"/0/auto_model/layers.16/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.27/post_attention_layernorm/Add",
"/0/auto_model/layers.27/post_attention_layernorm/ReduceMean",
"/0/auto_model/layers.27/input_layernorm/Add",
"/0/auto_model/layers.27/input_layernorm/ReduceMean",
"/0/auto_model/layers.27/self_attn/q_norm/Pow",
"/0/auto_model/layers.14/self_attn/k_norm/Pow",
"/0/auto_model/layers.26/self_attn/q_norm/Pow",
"/0/auto_model/layers.25/self_attn/q_norm/Pow",
"/0/auto_model/layers.26/self_attn/k_norm/Pow",
"/0/auto_model/layers.8/self_attn/k_norm/Pow",
"/0/auto_model/layers.24/self_attn/k_norm/Pow",
"/0/auto_model/layers.24/self_attn/q_norm/Pow",
"/0/auto_model/layers.25/self_attn/k_norm/Pow",
"/0/auto_model/layers.23/self_attn/q_norm/Pow",
"/0/auto_model/layers.27/self_attn/k_norm/Pow",
"/0/auto_model/layers.12/self_attn/k_norm/Pow",
"/0/auto_model/layers.13/self_attn/k_norm/Pow",
"/0/auto_model/layers.2/mlp/down_proj/MatMul",
"/0/auto_model/layers.3/post_attention_layernorm/Cast",
"/0/auto_model/layers.3/Add",
"/0/auto_model/layers.3/Add_1",
"/0/auto_model/layers.4/input_layernorm/Cast",
"/0/auto_model/layers.3/input_layernorm/Cast",
"/0/auto_model/layers.2/Add_1",
"/0/auto_model/layers.4/Add",
"/0/auto_model/layers.4/post_attention_layernorm/Cast",
"/0/auto_model/layers.5/input_layernorm/Cast",
"/0/auto_model/layers.4/Add_1",
"/0/auto_model/layers.5/post_attention_layernorm/Cast",
"/0/auto_model/layers.5/Add",
"/0/auto_model/layers.5/Add_1",
"/0/auto_model/layers.6/input_layernorm/Cast",
"/0/auto_model/layers.7/Add_1",
"/0/auto_model/layers.8/input_layernorm/Cast",
"/0/auto_model/layers.7/Add",
"/0/auto_model/layers.7/post_attention_layernorm/Cast",
"/0/auto_model/layers.6/Add",
"/0/auto_model/layers.6/post_attention_layernorm/Cast",
"/0/auto_model/layers.6/Add_1",
"/0/auto_model/layers.7/input_layernorm/Cast",
"/0/auto_model/layers.8/Add",
"/0/auto_model/layers.8/post_attention_layernorm/Cast",
"/0/auto_model/layers.9/input_layernorm/Cast",
"/0/auto_model/layers.8/Add_1",
"/0/auto_model/layers.9/post_attention_layernorm/Cast",
"/0/auto_model/layers.9/Add",
"/0/auto_model/layers.9/Add_1",
"/0/auto_model/layers.10/input_layernorm/Cast",
"/0/auto_model/layers.11/input_layernorm/Cast",
"/0/auto_model/layers.10/Add_1",
"/0/auto_model/layers.10/Add",
"/0/auto_model/layers.10/post_attention_layernorm/Cast",
"/0/auto_model/layers.11/Add",
"/0/auto_model/layers.11/post_attention_layernorm/Cast",
"/0/auto_model/layers.11/Add_1",
"/0/auto_model/layers.12/input_layernorm/Cast",
"/0/auto_model/layers.12/Add",
"/0/auto_model/layers.12/post_attention_layernorm/Cast",
"/0/auto_model/layers.12/Add_1",
"/0/auto_model/layers.13/input_layernorm/Cast",
"/0/auto_model/layers.13/Add",
"/0/auto_model/layers.13/post_attention_layernorm/Cast",
"/0/auto_model/layers.14/input_layernorm/Cast",
"/0/auto_model/layers.13/Add_1",
"/0/auto_model/layers.14/Add_1",
"/0/auto_model/layers.15/input_layernorm/Cast",
"/0/auto_model/layers.14/post_attention_layernorm/Cast",
"/0/auto_model/layers.14/Add",
"/0/auto_model/layers.15/post_attention_layernorm/Cast",
"/0/auto_model/layers.15/Add_1",
"/0/auto_model/layers.16/input_layernorm/Cast",
"/0/auto_model/layers.15/Add",
"/0/auto_model/layers.17/input_layernorm/Cast",
"/0/auto_model/layers.16/Add_1",
"/0/auto_model/layers.16/Add",
"/0/auto_model/layers.16/post_attention_layernorm/Cast",
"/0/auto_model/layers.19/input_layernorm/Cast",
"/0/auto_model/layers.18/Add_1",
"/0/auto_model/layers.18/input_layernorm/Cast",
"/0/auto_model/layers.17/Add_1",
"/0/auto_model/layers.17/Add",
"/0/auto_model/layers.17/post_attention_layernorm/Cast",
"/0/auto_model/layers.18/post_attention_layernorm/Cast",
"/0/auto_model/layers.18/Add",
"/0/auto_model/layers.19/Add",
"/0/auto_model/layers.19/post_attention_layernorm/Cast",
"/0/auto_model/layers.22/Add_1",
"/0/auto_model/layers.23/input_layernorm/Cast",
"/0/auto_model/layers.20/Add_1",
"/0/auto_model/layers.21/input_layernorm/Cast",
"/0/auto_model/layers.21/Add_1",
"/0/auto_model/layers.22/input_layernorm/Cast",
"/0/auto_model/layers.19/Add_1",
"/0/auto_model/layers.20/input_layernorm/Cast",
"/0/auto_model/layers.24/input_layernorm/Cast",
"/0/auto_model/layers.23/Add_1",
"/0/auto_model/layers.22/Add",
"/0/auto_model/layers.22/post_attention_layernorm/Cast",
"/0/auto_model/layers.21/Add",
"/0/auto_model/layers.21/post_attention_layernorm/Cast",
"/0/auto_model/layers.20/Add",
"/0/auto_model/layers.20/post_attention_layernorm/Cast",
"/0/auto_model/layers.23/post_attention_layernorm/Cast",
"/0/auto_model/layers.23/Add",
"/0/auto_model/layers.25/input_layernorm/Cast",
"/0/auto_model/layers.24/Add_1",
"/0/auto_model/layers.24/post_attention_layernorm/Cast",
"/0/auto_model/layers.24/Add",
"/0/auto_model/layers.25/Add",
"/0/auto_model/layers.25/post_attention_layernorm/Cast",
"/0/auto_model/layers.25/Add_1",
"/0/auto_model/layers.26/input_layernorm/Cast",
"/0/auto_model/layers.26/Add",
"/0/auto_model/layers.26/post_attention_layernorm/Cast",
"/0/auto_model/layers.21/self_attn/q_norm/Pow",
"/0/auto_model/layers.26/Add_1",
"/0/auto_model/layers.27/input_layernorm/Cast",
"/0/auto_model/layers.27/Add",
"/0/auto_model/layers.27/post_attention_layernorm/Cast",
"/0/auto_model/norm/Add",
"/0/auto_model/norm/ReduceMean",
"/0/auto_model/layers.23/self_attn/k_norm/Pow",
"/0/auto_model/layers.21/self_attn/k_norm/Pow",
"/0/auto_model/layers.22/self_attn/k_norm/Pow",
"/0/auto_model/layers.10/self_attn/k_norm/Pow",
"/0/auto_model/layers.19/self_attn/q_norm/Pow",
"/0/auto_model/layers.2/mlp/Mul",
"/0/auto_model/layers.22/self_attn/q_norm/Pow",
"/0/auto_model/layers.11/self_attn/k_norm/Pow",
"/0/auto_model/layers.20/self_attn/q_norm/Pow",
"/0/auto_model/layers.20/self_attn/k_norm/Pow",
"/0/auto_model/layers.18/self_attn/q_norm/Pow",
"/0/auto_model/layers.17/self_attn/q_norm/Pow",
"/0/auto_model/layers.27/mlp/down_proj/MatMul",
"/0/auto_model/layers.19/self_attn/k_norm/Pow",
"/0/auto_model/layers.27/Add_1",
"/0/auto_model/norm/Cast",
"/0/auto_model/layers.16/self_attn/k_norm/Pow",
"/0/auto_model/layers.18/self_attn/k_norm/Pow",
"/0/auto_model/layers.11/self_attn/q_norm/Pow",
"/0/auto_model/layers.9/self_attn/q_norm/Pow",
"/0/auto_model/layers.26/self_attn/q_norm/Add",
"/0/auto_model/layers.26/self_attn/q_norm/ReduceMean",
"/0/auto_model/layers.14/self_attn/k_norm/Add",
"/0/auto_model/layers.14/self_attn/k_norm/ReduceMean",
"/0/auto_model/layers.16/self_attn/q_norm/Pow",
"/0/auto_model/layers.27/mlp/Mul",
"/0/auto_model/layers.27/self_attn/q_norm/ReduceMean",
"/0/auto_model/layers.27/self_attn/q_norm/Add",
"/0/auto_model/layers.9/self_attn/k_norm/Pow",
"/0/auto_model/layers.17/self_attn/k_norm/Pow",
"/0/auto_model/layers.26/self_attn/k_norm/ReduceMean",
"/0/auto_model/layers.26/self_attn/k_norm/Add",
"/0/auto_model/layers.25/self_attn/k_norm/Add",
"/0/auto_model/layers.25/self_attn/k_norm/ReduceMean",
"/0/auto_model/layers.13/self_attn/k_norm/Add",
"/0/auto_model/layers.13/self_attn/k_norm/ReduceMean",
"/0/auto_model/layers.10/self_attn/q_norm/Pow",
"/0/auto_model/layers.25/input_layernorm/Mul_1",
"/0/auto_model/layers.27/self_attn/k_norm/ReduceMean",
"/0/auto_model/layers.27/self_attn/k_norm/Add",
"/0/auto_model/layers.26/input_layernorm/Mul_1",
"/0/auto_model/layers.15/self_attn/q_norm/Pow",
"/0/auto_model/layers.12/self_attn/k_norm/Add",
"/0/auto_model/layers.12/self_attn/k_norm/ReduceMean",
"/0/auto_model/layers.25/self_attn/q_norm/Add",
"/0/auto_model/layers.25/self_attn/q_norm/ReduceMean",
"/0/auto_model/layers.24/input_layernorm/Mul_1",
"/0/auto_model/layers.12/self_attn/q_norm/Pow",
"/0/auto_model/layers.24/self_attn/q_norm/ReduceMean",
"/0/auto_model/layers.24/self_attn/q_norm/Add",
"/0/auto_model/layers.24/self_attn/k_norm/ReduceMean",
"/0/auto_model/layers.24/self_attn/k_norm/Add",
"/0/auto_model/layers.22/mlp/Mul",
"/0/auto_model/layers.2/post_attention_layernorm/Pow",
"/0/auto_model/layers.23/mlp/Mul",
"/0/auto_model/layers.24/mlp/Mul",
"/0/auto_model/layers.23/input_layernorm/Mul_1",
"/0/auto_model/layers.14/self_attn/q_norm/Pow",
"/0/auto_model/layers.14/self_attn/k_proj/MatMul",
"/0/auto_model/layers.14/self_attn/k_norm/Cast",
"/0/auto_model/layers.14/self_attn/Reshape_1",
"/0/auto_model/layers.21/mlp/Mul",
"/0/auto_model/layers.3/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.3/input_layernorm/Sqrt",
"/0/auto_model/layers.4/input_layernorm/Sqrt",
"/0/auto_model/layers.5/input_layernorm/Sqrt",
"/0/auto_model/layers.4/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.5/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.6/input_layernorm/Sqrt",
"/0/auto_model/layers.6/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.8/input_layernorm/Sqrt",
"/0/auto_model/layers.8/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.7/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.7/input_layernorm/Sqrt",
"/0/auto_model/layers.9/input_layernorm/Sqrt",
"/0/auto_model/layers.10/input_layernorm/Sqrt",
"/0/auto_model/layers.9/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.11/input_layernorm/Sqrt",
"/0/auto_model/layers.10/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.12/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.11/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.12/input_layernorm/Sqrt",
"/0/auto_model/layers.13/input_layernorm/Sqrt",
"/0/auto_model/layers.14/input_layernorm/Sqrt",
"/0/auto_model/layers.13/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.15/input_layernorm/Sqrt",
"/0/auto_model/layers.14/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.16/input_layernorm/Sqrt",
"/0/auto_model/layers.15/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.17/input_layernorm/Sqrt",
"/0/auto_model/layers.16/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.19/input_layernorm/Sqrt",
"/0/auto_model/layers.17/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.18/input_layernorm/Sqrt",
"/0/auto_model/layers.18/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.19/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.23/input_layernorm/Sqrt",
"/0/auto_model/layers.20/input_layernorm/Sqrt",
"/0/auto_model/layers.21/input_layernorm/Sqrt",
"/0/auto_model/layers.22/input_layernorm/Sqrt",
"/0/auto_model/layers.22/post_attention_layernorm/Sqrt",
"/0/auto_model/layers.24/input_layernorm/Sqrt",
"/0/auto_model/layers.20/post_attention_layernorm/Sqrt",
📄 許可證
本項目採用Apache 2.0許可證。
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers 支持多種語言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors 英語
G
avsolatorio
945.68k
29
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98