模型简介
模型特点
模型能力
使用案例
🚀 NuExtract 2.0 8B by NuMind
NuExtract 2.0是专门为结构化信息提取任务训练的一系列模型。它支持多模态输入,并且具备多语言处理能力。我们提供了几种不同规模的版本,所有版本均基于QwenVL系列的预训练模型。
🚀 快速开始
模型选择
我们提供了不同大小的模型版本,具体信息如下:
模型大小 | 模型名称 | 基础模型 | 许可证 | Huggingface链接 |
---|---|---|---|---|
2B | NuExtract-2.0-2B | Qwen2-VL-2B-Instruct | MIT | NuExtract-2.0-2B |
4B | NuExtract-2.0-4B | Qwen2.5-VL-3B-Instruct | Qwen研究许可证 | NuExtract-2.0-4B |
8B | NuExtract-2.0-8B | Qwen2.5-VL-7B-Instruct | MIT | NuExtract-2.0-8B |
⚠️ 重要提示
NuExtract-2.0-2B
基于Qwen2-VL而非Qwen2.5-VL,因为最小的Qwen2.5-VL模型(3B)具有更严格的非商业许可证。因此,我们将NuExtract-2.0-2B
作为可用于商业用途的小模型选项。
✨ 主要特性
- 多模态支持:支持文本和图像的多模态输入。
- 多语言处理:具备多语言处理能力。
- 多种输出类型:支持多种输出类型,如字符串、整数、日期等。
📦 安装指南
使用前请确保已经安装了transformers
库。以下是使用transformers
加载模型的示例代码:
import torch
from transformers import AutoProcessor, AutoModelForVision2Seq
model_name = "numind/NuExtract-2.0-2B"
# model_name = "numind/NuExtract-2.0-8B"
model = AutoModelForVision2Seq.from_pretrained(model_name,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto")
processor = AutoProcessor.from_pretrained(model_name,
trust_remote_code=True,
padding_side='left',
use_fast=True)
# You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
# min_pixels = 256*28*28
# max_pixels = 1280*28*28
# processor = AutoProcessor.from_pretrained(model_name, min_pixels=min_pixels, max_pixels=max_pixels)
💻 使用示例
基础用法
以下是一个从文本中提取姓名的基础示例:
template = """{"names": ["string"]}"""
document = "John went to the restaurant with Mary. James went to the cinema."
# prepare the user message content
messages = [{"role": "user", "content": document}]
text = processor.tokenizer.apply_chat_template(
messages,
template=template, # template is specified here
tokenize=False,
add_generation_prompt=True,
)
print(text)
""""<|im_start|>user
# Template:
{"names": ["string"]}
# Context:
John went to the restaurant with Mary. James went to the cinema.<|im_end|>
<|im_start|>assistant"""
image_inputs = process_all_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
padding=True,
return_tensors="pt",
).to("cuda")
# we choose greedy sampling here, which works well for most information extraction tasks
generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}
# Inference: Generation of the output
generated_ids = model.generate(
**inputs,
**generation_config
)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
# ['{"names": ["John", "Mary", "James"]}']
高级用法
上下文示例
有时候模型可能无法达到我们期望的效果,因为任务具有挑战性或存在一定的歧义。在这种情况下,提供“上下文示例”可以帮助模型更好地理解任务。以下是一个使用上下文示例的示例:
template = """{"names": ["string"]}"""
document = "John went to the restaurant with Mary. James went to the cinema."
examples = [
{
"input": "Stephen is the manager at Susan's store.",
"output": """{"names": ["-STEPHEN-", "-SUSAN-"]}"""
}
]
messages = [{"role": "user", "content": document}]
text = processor.tokenizer.apply_chat_template(
messages,
template=template,
examples=examples, # examples provided here
tokenize=False,
add_generation_prompt=True,
)
image_inputs = process_all_vision_info(messages, examples)
inputs = processor(
text=[text],
images=image_inputs,
padding=True,
return_tensors="pt",
).to("cuda")
# we choose greedy sampling here, which works well for most information extraction tasks
generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}
# Inference: Generation of the output
generated_ids = model.generate(
**inputs,
**generation_config
)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
# ['{"names": ["-JOHN-", "-MARY-", "-JAMES-"]}']
图像输入
如果要给模型提供图像输入,只需将消息内容指定为一个描述所需图像文件的字典,而不是字符串。以下是一个使用图像输入的示例:
template = """{"store": "verbatim-string"}"""
document = {"type": "image", "image": "file://1.jpg"}
messages = [{"role": "user", "content": [document]}]
text = processor.tokenizer.apply_chat_template(
messages,
template=template,
tokenize=False,
add_generation_prompt=True,
)
image_inputs = process_all_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
padding=True,
return_tensors="pt",
).to("cuda")
generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}
# Inference: Generation of the output
generated_ids = model.generate(
**inputs,
**generation_config
)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
# ['{"store": "Trader Joe\'s"}']
批量推理
以下是一个批量推理的示例:
inputs = [
# image input with no ICL examples
{
"document": {"type": "image", "image": "file://0.jpg"},
"template": """{"store_name": "verbatim-string"}""",
},
# image input with 1 ICL example
{
"document": {"type": "image", "image": "file://0.jpg"},
"template": """{"store_name": "verbatim-string"}""",
"examples": [
{
"input": {"type": "image", "image": "file://1.jpg"},
"output": """{"store_name": "Trader Joe's"}""",
}
],
},
# text input with no ICL examples
{
"document": {"type": "text", "text": "John went to the restaurant with Mary. James went to the cinema."},
"template": """{"names": ["string"]}""",
},
# text input with ICL example
{
"document": {"type": "text", "text": "John went to the restaurant with Mary. James went to the cinema."},
"template": """{"names": ["string"]}""",
"examples": [
{
"input": "Stephen is the manager at Susan's store.",
"output": """{"names": ["STEPHEN", "SUSAN"]}"""
}
],
},
]
# messages should be a list of lists for batch processing
messages = [
[
{
"role": "user",
"content": [x['document']],
}
]
for x in inputs
]
# apply chat template to each example individually
texts = [
processor.tokenizer.apply_chat_template(
messages[i], # Now this is a list containing one message
template=x['template'],
examples=x.get('examples', None),
tokenize=False,
add_generation_prompt=True)
for i, x in enumerate(inputs)
]
image_inputs = process_all_vision_info(messages, [x.get('examples') for x in inputs])
inputs = processor(
text=texts,
images=image_inputs,
padding=True,
return_tensors="pt",
).to("cuda")
generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}
# Batch Inference
generated_ids = model.generate(**inputs, **generation_config)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_texts = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
for y in output_texts:
print(y)
# {"store_name": "WAL-MART"}
# {"store_name": "Walmart"}
# {"names": ["John", "Mary", "James"]}
# {"names": ["JOHN", "MARY", "JAMES"]}
模板生成
如果想将现有的其他格式的模式文件(如XML、YAML等)转换为NuExtract模板,或者从自然语言描述生成模板,NuExtract 2.0模型可以自动为你生成。以下是两个示例:
# convert XML into a NuExtract template
xml_template = """<SportResult>
<Date></Date>
<Sport></Sport>
<Venue></Venue>
<HomeTeam></HomeTeam>
<AwayTeam></AwayTeam>
<HomeScore></HomeScore>
<AwayScore></AwayScore>
<TopScorer></TopScorer>
</SportResult>"""
messages = [
{
"role": "user",
"content": [{"type": "text", "text": xml_template}],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True,
)
image_inputs = process_all_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
padding=True,
return_tensors="pt",
).to("cuda")
generated_ids = model.generate(
**inputs,
**generation_config
)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text[0])
# {
# "Date": "date-time",
# "Sport": "verbatim-string",
# "Venue": "verbatim-string",
# "HomeTeam": "verbatim-string",
# "AwayTeam": "verbatim-string",
# "HomeScore": "integer",
# "AwayScore": "integer",
# "TopScorer": "verbatim-string"
# }
# generate a template from natural language description
description = "I would like to extract important details from the contract."
messages = [
{
"role": "user",
"content": [{"type": "text", "text": description}],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True,
)
image_inputs = process_all_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
padding=True,
return_tensors="pt",
).to("cuda")
generated_ids = model.generate(
**inputs,
**generation_config
)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text[0])
# {
# "Contract": {
# "Title": "verbatim-string",
# "Description": "verbatim-string",
# "Terms": [
# {
# "Term": "verbatim-string",
# "Description": "verbatim-string"
# }
# ],
# "Date": "date-time",
# "Signatory": "verbatim-string"
# }
# }
📚 详细文档
模板支持类型
使用模型时,需要提供一个输入文本/图像和一个描述需要提取信息的JSON模板。模板应该是一个JSON对象,指定字段名及其预期类型。支持的类型包括:
verbatim-string
- 指示模型提取输入中逐字存在的文本。string
- 一个通用的字符串字段,可以包含释义/抽象内容。integer
- 一个整数。number
- 一个整数或小数。date-time
- ISO格式的日期。- 上述任何类型的数组(例如
["string"]
) enum
- 从一组可能的答案中选择(在模板中表示为选项数组,例如["yes", "no", "maybe"]
)。multi-label
- 一个可以有多个可能答案的枚举(在模板中表示为双重包装的数组,例如[["A", "B", "C"]]
)。
如果模型没有为某个字段识别到相关信息,它将返回 null
或 []
(对于数组和多标签)。
以下是一个示例模板:
{
"first_name": "verbatim-string",
"last_name": "verbatim-string",
"description": "string",
"age": "integer",
"gpa": "number",
"birth_date": "date-time",
"nationality": ["France", "England", "Japan", "USA", "China"],
"languages_spoken": [["English", "French", "Japanese", "Mandarin", "Spanish"]]
}
一个示例输出:
{
"first_name": "Susan",
"last_name": "Smith",
"description": "A student studying computer science.",
"age": 20,
"gpa": 3.7,
"birth_date": "2005-03-01",
"nationality": "England",
"languages_spoken": ["English", "French"]
}
💡 使用建议
建议在使用NuExtract时将温度设置为0或非常接近0。一些推理框架(如Ollama)默认使用0.7的温度,这可能不适用于许多提取任务。
🔧 技术细节
图像输入数据处理函数
以下是一个处理图像输入数据加载的函数:
def process_all_vision_info(messages, examples=None):
"""
Process vision information from both messages and in-context examples, supporting batch processing.
Args:
messages: List of message dictionaries (single input) OR list of message lists (batch input)
examples: Optional list of example dictionaries (single input) OR list of example lists (batch)
Returns:
A flat list of all images in the correct order:
- For single input: example images followed by message images
- For batch input: interleaved as (item1 examples, item1 input, item2 examples, item2 input, etc.)
- Returns None if no images were found
"""
from qwen_vl_utils import process_vision_info, fetch_image
# Helper function to extract images from examples
def extract_example_images(example_item):
if not example_item:
return []
# Handle both list of examples and single example
examples_to_process = example_item if isinstance(example_item, list) else [example_item]
images = []
for example in examples_to_process:
if isinstance(example.get('input'), dict) and example['input'].get('type') == 'image':
images.append(fetch_image(example['input']))
return images
# Normalize inputs to always be batched format
is_batch = messages and isinstance(messages[0], list)
messages_batch = messages if is_batch else [messages]
is_batch_examples = examples and isinstance(examples, list) and (isinstance(examples[0], list) or examples[0] is None)
examples_batch = examples if is_batch_examples else ([examples] if examples is not None else None)
# Ensure examples batch matches messages batch if provided
if examples and len(examples_batch) != len(messages_batch):
if not is_batch and len(examples_batch) == 1:
# Single example set for a single input is fine
pass
else:
raise ValueError("Examples batch length must match messages batch length")
# Process all inputs, maintaining correct order
all_images = []
for i, message_group in enumerate(messages_batch):
# Get example images for this input
if examples and i < len(examples_batch):
input_example_images = extract_example_images(examples_batch[i])
all_images.extend(input_example_images)
# Get message images for this input
input_message_images = process_vision_info(message_group)[0] or []
all_images.extend(input_message_images)
return all_images if all_images else None
📄 许可证
本项目采用MIT许可证。
微调与部署
微调
你可以在GitHub仓库的cookbooks文件夹中找到微调教程笔记本。
vLLM部署
运行以下命令以提供一个与OpenAI兼容的API:
vllm serve numind/NuExtract-2.0-8B --trust_remote_code --limit-mm-per-prompt image=6 --chat-template-content-format openai
如果你遇到内存问题,请相应地设置--max-model-len
。
以下是向模型发送请求的示例代码:
import json
from openai import OpenAI
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
chat_response = client.chat.completions.create(
model="numind/NuExtract-2.0-8B",
temperature=0,
messages=[
{
"role": "user",
"content": [{"type": "text", "text": "Yesterday I went shopping at Bunnings"}],
},
],
extra_body={
"chat_template_kwargs": {
"template": json.dumps(json.loads("""{\"store\": \"verbatim-string\"}"""), indent=4)
},
}
)
print("Chat response:", chat_response)
对于图像输入,请求结构如下所示。确保在 "content"
中按图像在提示中出现的顺序排列(即任何上下文示例在主输入之前)。
import base64
def encode_image(image_path):
"""
Encode the image file to base64 string
"""
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
base64_image = encode_image("0.jpg")
base64_image2 = encode_image("1.jpg")
chat_response = client.chat.completions.create(
model="numind/NuExtract-2.0-8B",
temperature=0,
messages=[
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}, # first ICL example image









