🚀 JPharmatron-7B
JPharmatron-7B是一款专为制药应用和研究设计的70亿参数大语言模型,能在制药文书和研究领域发挥重要作用。
✨ 主要特性
- 基于Qwen2.5 - 7B持续预训练,使用来自日语和英语数据集的88亿个标记,相比JPharmatron - 7B - base模型,通过Qwen2.5 - 7B - Instruct的聊天向量增强了聊天能力。
- 专为制药文书和研究应用而设计,不适用于医疗用途或其他对风险敏感的用途。
- 在与同规模的其他通用/特定领域模型的评估对比中,在五个基准测试中均取得了最高分。
📚 详细文档
模型详情
模型描述
JPharmatron - 7B基于Qwen2.5 - 7B,使用来自日语和英语数据集的88亿个标记进行持续预训练。与JPharmatron - 7B - base模型相比,它从Qwen2.5 - 7B - Instruct的聊天向量中获得了增强的聊天能力。
- 开发者:EQUES Inc.
- 资助方:GENIAC项目
- 模型类型:自回归解码器
- 支持语言:日语、英语
- 许可证:CC - BY - SA - 4.0
模型资源
应用场景
此模型旨在用于制药文书和研究应用,未经过医疗用途或其他对风险敏感用途的验证。
评估
我们将JPharmatron - 7B模型与其他同规模的通用/特定领域模型进行了评估对比。
测试数据
使用了JPharmaBench和两个现有基准测试(JMMLU (pharma) 和IgakuQA)。
评估结果
与Meditron3 - Qwen2.5 - 7B和Llama3.1 - Swallow - 8B - Instruct - v0.3相比,JPharmatron - 7B在所有五个基准测试中均取得了最高分。

引用信息
BibTeX:
@misc{sukeda_japanese_2025,
title = {A {Japanese} {Language} {Model} and {Three} {New} {Evaluation} {Benchmarks} for {Pharmaceutical} {NLP}},
url = {http://arxiv.org/abs/2505.16661},
doi = {10.48550/arXiv.2505.16661},
abstract = {We present a Japanese domain-specific language model for the pharmaceutical field, developed through continual pretraining on 2 billion Japanese pharmaceutical tokens and 8 billion English biomedical tokens. To enable rigorous evaluation, we introduce three new benchmarks: YakugakuQA, based on national pharmacist licensing exams; NayoseQA, which tests cross-lingual synonym and terminology normalization; and SogoCheck, a novel task designed to assess consistency reasoning between paired statements. We evaluate our model against both open-source medical LLMs and commercial models, including GPT-4o. Results show that our domain-specific model outperforms existing open models and achieves competitive performance with commercial ones, particularly on terminology-heavy and knowledge-based tasks. Interestingly, even GPT-4o performs poorly on SogoCheck, suggesting that cross-sentence consistency reasoning remains an open challenge. Our benchmark suite offers a broader diagnostic lens for pharmaceutical NLP, covering factual recall, lexical variation, and logical consistency. This work demonstrates the feasibility of building practical, secure, and cost-effective language models for Japanese domain-specific applications, and provides reusable evaluation resources for future research in pharmaceutical and healthcare NLP. Our model, codes, and datasets are released at https://github.com/EQUES-Inc/pharma-LLM-eval.},
urldate = {2025-05-30},
publisher = {arXiv},
author = {Sukeda, Issey and Fujii, Takuro and Buma, Kosei and Sasaki, Shunsuke and Ono, Shinnosuke},
month = may,
year = {2025},
note = {arXiv:2505.16661 [cs]},
annote = {Comment: 15 pages, 9 tables, 5 figures}
}
更多信息
请参阅我们的预印本:A Japanese Language Model and Three New Evaluation Benchmarks for Pharmaceutical NLP。
模型卡片作者
@shinnosukeono