🚀 JPharmatron-7B
JPharmatron-7B是一款專為製藥應用和研究設計的70億參數大語言模型,能在製藥文書和研究領域發揮重要作用。
✨ 主要特性
- 基於Qwen2.5 - 7B持續預訓練,使用來自日語和英語數據集的88億個標記,相比JPharmatron - 7B - base模型,通過Qwen2.5 - 7B - Instruct的聊天向量增強了聊天能力。
- 專為製藥文書和研究應用而設計,不適用於醫療用途或其他對風險敏感的用途。
- 在與同規模的其他通用/特定領域模型的評估對比中,在五個基準測試中均取得了最高分。
📚 詳細文檔
模型詳情
模型描述
JPharmatron - 7B基於Qwen2.5 - 7B,使用來自日語和英語數據集的88億個標記進行持續預訓練。與JPharmatron - 7B - base模型相比,它從Qwen2.5 - 7B - Instruct的聊天向量中獲得了增強的聊天能力。
- 開發者:EQUES Inc.
- 資助方:GENIAC項目
- 模型類型:自迴歸解碼器
- 支持語言:日語、英語
- 許可證:CC - BY - SA - 4.0
模型資源
應用場景
此模型旨在用於製藥文書和研究應用,未經過醫療用途或其他對風險敏感用途的驗證。
評估
我們將JPharmatron - 7B模型與其他同規模的通用/特定領域模型進行了評估對比。
測試數據
使用了JPharmaBench和兩個現有基準測試(JMMLU (pharma) 和IgakuQA)。
評估結果
與Meditron3 - Qwen2.5 - 7B和Llama3.1 - Swallow - 8B - Instruct - v0.3相比,JPharmatron - 7B在所有五個基準測試中均取得了最高分。

引用信息
BibTeX:
@misc{sukeda_japanese_2025,
title = {A {Japanese} {Language} {Model} and {Three} {New} {Evaluation} {Benchmarks} for {Pharmaceutical} {NLP}},
url = {http://arxiv.org/abs/2505.16661},
doi = {10.48550/arXiv.2505.16661},
abstract = {We present a Japanese domain-specific language model for the pharmaceutical field, developed through continual pretraining on 2 billion Japanese pharmaceutical tokens and 8 billion English biomedical tokens. To enable rigorous evaluation, we introduce three new benchmarks: YakugakuQA, based on national pharmacist licensing exams; NayoseQA, which tests cross-lingual synonym and terminology normalization; and SogoCheck, a novel task designed to assess consistency reasoning between paired statements. We evaluate our model against both open-source medical LLMs and commercial models, including GPT-4o. Results show that our domain-specific model outperforms existing open models and achieves competitive performance with commercial ones, particularly on terminology-heavy and knowledge-based tasks. Interestingly, even GPT-4o performs poorly on SogoCheck, suggesting that cross-sentence consistency reasoning remains an open challenge. Our benchmark suite offers a broader diagnostic lens for pharmaceutical NLP, covering factual recall, lexical variation, and logical consistency. This work demonstrates the feasibility of building practical, secure, and cost-effective language models for Japanese domain-specific applications, and provides reusable evaluation resources for future research in pharmaceutical and healthcare NLP. Our model, codes, and datasets are released at https://github.com/EQUES-Inc/pharma-LLM-eval.},
urldate = {2025-05-30},
publisher = {arXiv},
author = {Sukeda, Issey and Fujii, Takuro and Buma, Kosei and Sasaki, Shunsuke and Ono, Shinnosuke},
month = may,
year = {2025},
note = {arXiv:2505.16661 [cs]},
annote = {Comment: 15 pages, 9 tables, 5 figures}
}
更多信息
請參閱我們的預印本:A Japanese Language Model and Three New Evaluation Benchmarks for Pharmaceutical NLP。
模型卡片作者
@shinnosukeono