Al Atlas 0.5B
首个专注于摩洛哥主要口语方言达里贾语的5亿参数语言模型
下载量 577
发布时间 : 3/5/2025
模型简介
基于Qwen-2.5微调的摩洛哥达里贾语专用模型,在1.55亿纯方言词符数据集上训练,具备文化语境理解能力
模型特点
专属方言模型
首个专为摩洛哥阿拉伯方言训练的语言模型
高质量数据
来自摩洛哥本土的1.55亿词符精选数据集
文化理解
能捕捉微妙的文化语境和本地化表达
模型能力
达里贾语文本生成
方言对话理解
文化语境分析
使用案例
对话系统
摩洛哥用户聊天机器人
为摩洛哥用户提供方言交互体验
内容生成
达里贾语内容创作
生成符合当地文化的文本内容
教育工具
达里贾语学习辅助
帮助学习者理解和使用摩洛哥方言
🚀 阿尔 - 阿特拉斯:摩洛哥阿拉伯语大语言模型
阿尔 - 阿特拉斯是一款专门为摩洛哥阿拉伯语方言“达里贾语”训练的语言模型,它基于特定数据集微调而来,能有效处理和生成达里贾语内容,为摩洛哥地区的语言应用提供了有力支持。
🚀 快速开始
from transformers import AutoModelForCausalLM, AutoTokenizer
# 加载模型和分词器
model = AutoModelForCausalLM.from_pretrained("atlasia/Al-Atlas-0.5B")
tokenizer = AutoTokenizer.from_pretrained("atlasia/Al-Atlas-0.5B")
# 示例用法
text = "الذكاء الاصطناعي هو فرع من علوم الكمبيوتر اللي كيركز"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(
**inputs,
max_new_tokens=1024,
pad_token_id=generator.tokenizer.pad_token_id or generator.tokenizer.eos_token_id,
repetition_penalty=1.5,
num_beams=8,
top_p= 0.9,
top_k= 150,
do_sample= True,
early_stopping = True,
)
response = tokenizer.decode(outputs[0])
# 响应内容:
الذكاء الاصطناعي هو فرع من علوم الكمبيوتر اللي كيركز گاع على تطوير الآلات اللي قادرة تدير مهام اللي عادة خاصها ذكاء بشري، بحال التعرف على الأنماط، حل المشاكل، اتخاذ القرارات، وفهم اللغة الطبيعية. الذكاء الاصطناعي عندو إمكانية باش يغير بزاف كيفاش كنعيشو، نخدمو، ونتفاعلو مع بعضياتنا.
واحد من أهم التطبيقات ديال الذكاء الاصطناعي هو فالصحة. الذكاء الاصطناعي يقدر يعاون الطبة باش يشخصو الأمراض بدقة أكبر، يأوتوماتيزيو المهام الروتينية، ويحسنو نتائج المرضى. مثلا، الخوارزميات ديال الذكاء الاصطناعي تقدر تحلل الصور الطبية باش تكتاشف العلامات الحيوية اللي ممكن ما تكونش واضحة للفحص البشري. زيادة على هادشي، الذكاء الاصطناعي يقدر يعاون الأطباء باش يصاوبو خطط علاج مخصصة حسب الاحتياجات الخاصة ديال كل مريض.
بالإضافة للصحة، الذكاء الاصطناعي عندو إمكانية باش يغير الطريقة اللي كنتفاعلو بيها مع التكنولوجيا. مثلا، الذكاء الاصطناعي يقدر يعاون الشركات باش يحسنو العمليات ديالهم، يأوتوماتيزيو المهام الروتينية، ويحسنو تجربة الزبون. زيادة على هادشي، الذكاء الاصطناعي يقدر يعاون الفلاحة باش يزيدو الإنتاجية، ينقصو التكاليف، ويحسنو جودة المحاصيل.
فالختام، الذكاء الاصطناعي عندو إمكانية باش يغير بزاف كيفاش كنعيشو، نخدمو، ونتفاعلو مع بعضياتنا. من خلال تطوير أنظمة ذكاء اصطناعي متقدمة، نقدرو نحسنو الكفاءة، نحسنو جودة الحياة، ونخلقو عالم أحسن للأجيال الجاية. مع استمرار تطور الذكاء الاصطناعي، من المرجح أنه غادي يلعب دور أكثر أهمية فتشكيل مستقبل البشرية. فالنهاية، الذكاء الاصطناعي عندو إمكانية باش يغير بزاف كيفاش كنعيشو، نخدمو، ونتفاعلو مع بعضياتنا. ولكن، خاصنا نكونو واعيين بالمخاطر والتحديات المرتبطة بالذكاء الاصطناعي باش نستافدو منو بأحسن طريقة. فالنهاية، الذكاء الاصطناعي عندو إمكانية باش يغير بزاف كيفاش كنعيشو، نخدمو، ونتفاعلو مع بعضياتنا. ولكن، خاصنا نكونو واعيين بالمخاطر والتحديات المرتبطة بالذكاء الاصطناعي باش نستافدو منو بأحسن طريقة. فالنهاية، الذكاء الاصطناعي عندو إمكانية باش يغير بزاف كيفاش كنعيشو، نخدمو، ونتفاعلو مع بعضياتنا. ولكن، خاصنا نكونو واعيين بالمخاطر والتحديات المرتبطة بالذكاء الاصطناعي باش نستافدو منو بأحسن طريقة. فالنهاية، الذكاء الاصطناعي عندو إمكانية باش يغير بزاف كيفاش كنعيشو، نخدمو، ونتفاعلو مع بعضياتنا. ولكن، خاصنا نكونو واعيين بالمخاطر والتحديات المرتبطة بالذكاء الاصطناعي باش نستافدو منو بأحسن طريقة. فالنهاية، الذكاء الاصطناعي عندو إمكانية باش يغير بزاف كيفاش كنعيشو، نخدمو، ونتفاعلو مع بعضياتنا. ولكن، خاصنا نكونو واعيين بالمخاطر والتحديات المرتبطة بالذكاء الاصطناعي باش نستافدو منو بأحسن طريقة. فالنهاية، الذكاء الاصطناعي عندو إمكانية باش يغير بزاف كيفاش كنعيشو، نخدمو، ونتفاعلو مع بعضياتنا
✨ 主要特性
- 专注达里贾语:首款专门为摩洛哥阿拉伯语方言训练的语言模型。
- 高质量数据:使用精心策划的1.55亿个标记的数据集,数据均来自真实的摩洛哥语料源。
- 文化理解:能够捕捉细微的文化背景和当地表达方式。
📦 数据集
训练语料库包含1.55亿个纯摩洛哥达里贾语内容的标记,数据来源如下:
- 社交媒体对话
- 转录的口语内容
- 在线论坛和讨论
- 当地新闻和媒体
- 用户生成的内容
每个来源都经过仔细审查,以确保方言的真实呈现,并去除任何现代标准阿拉伯语(MSA)或其他阿拉伯方言的干扰。
📚 详细文档
模型详情
属性 | 详情 |
---|---|
模型类型 | 基于Transformer的语言模型 |
参数数量 | 0.5B |
上下文窗口 | 2048个标记 |
训练数据 | 1.55亿个纯达里贾语内容的标记 |
应用场景
- 面向摩洛哥用户的聊天机器人
- 达里贾语内容生成
- 摩洛哥内容的文本分类
- 当地市场的情感分析
- 客户服务自动化
- 达里贾语使用者的教育工具
🔧 技术细节
未来工作
- 扩展到更大的模型规模
- 为达里贾语创建评估基准
- 扩大训练数据集
- 开发特定任务的微调版本
- 进行监督微调(SFT)训练
📄 许可证
@misc{atlasia2025al-atlas-0.5B,
title={Al-Atlas: A Causal Language Model for Moroccan Darija},
author={Abdelaziz Bounhar},
year={2025},
howpublished={\url{https://huggingface.co/atlasia/Al-Atlas-0.5B/}},
organization={AtlasIA}
}
Phi 2 GGUF
其他
Phi-2是微软开发的一个小型但强大的语言模型,具有27亿参数,专注于高效推理和高质量文本生成。
大型语言模型 支持多种语言
P
TheBloke
41.5M
205
Roberta Large
MIT
基于掩码语言建模目标预训练的大型英语语言模型,采用改进的BERT训练方法
大型语言模型 英语
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERT是BERT基础模型的蒸馏版本,在保持相近性能的同时更轻量高效,适用于序列分类、标记分类等自然语言处理任务。
大型语言模型 英语
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instruct 是一个多语言大语言模型,针对多语言对话用例进行了优化,在常见的行业基准测试中表现优异。
大型语言模型 英语
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM-RoBERTa是基于100种语言的2.5TB过滤CommonCrawl数据预训练的多语言模型,采用掩码语言建模目标进行训练。
大型语言模型 支持多种语言
X
FacebookAI
9.6M
664
Roberta Base
MIT
基于Transformer架构的英语预训练模型,通过掩码语言建模目标在海量文本上训练,支持文本特征提取和下游任务微调
大型语言模型 英语
R
FacebookAI
9.3M
488
Opt 125m
其他
OPT是由Meta AI发布的开放预训练Transformer语言模型套件,参数量从1.25亿到1750亿,旨在对标GPT-3系列性能,同时促进大规模语言模型的开放研究。
大型语言模型 英语
O
facebook
6.3M
198
1
基于transformers库的预训练模型,适用于多种NLP任务
大型语言模型
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1是Meta推出的多语言大语言模型系列,包含8B、70B和405B参数规模,支持8种语言和代码生成,优化了多语言对话场景。
大型语言模型
Transformers 支持多种语言

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
T5基础版是由Google开发的文本到文本转换Transformer模型,参数规模2.2亿,支持多语言NLP任务。
大型语言模型 支持多种语言
T
google-t5
5.4M
702
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98