Al Atlas 0.5B
首個專注於摩洛哥主要口語方言達裡賈語的5億參數語言模型
下載量 577
發布時間 : 3/5/2025
模型概述
基於Qwen-2.5微調的摩洛哥達裡賈語專用模型,在1.55億純方言詞符數據集上訓練,具備文化語境理解能力
模型特點
專屬方言模型
首個專為摩洛哥阿拉伯方言訓練的語言模型
高質量數據
來自摩洛哥本土的1.55億詞符精選數據集
文化理解
能捕捉微妙的文化語境和本地化表達
模型能力
達裡賈語文本生成
方言對話理解
文化語境分析
使用案例
對話系統
摩洛哥用戶聊天機器人
為摩洛哥用戶提供方言交互體驗
內容生成
達裡賈語內容創作
生成符合當地文化的文本內容
教育工具
達裡賈語學習輔助
幫助學習者理解和使用摩洛哥方言
🚀 阿爾 - 阿特拉斯:摩洛哥阿拉伯語大語言模型
阿爾 - 阿特拉斯是一款專門為摩洛哥阿拉伯語方言“達裡賈語”訓練的語言模型,它基於特定數據集微調而來,能有效處理和生成達裡賈語內容,為摩洛哥地區的語言應用提供了有力支持。
🚀 快速開始
from transformers import AutoModelForCausalLM, AutoTokenizer
# 加載模型和分詞器
model = AutoModelForCausalLM.from_pretrained("atlasia/Al-Atlas-0.5B")
tokenizer = AutoTokenizer.from_pretrained("atlasia/Al-Atlas-0.5B")
# 示例用法
text = "الذكاء الاصطناعي هو فرع من علوم الكمبيوتر اللي كيركز"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(
**inputs,
max_new_tokens=1024,
pad_token_id=generator.tokenizer.pad_token_id or generator.tokenizer.eos_token_id,
repetition_penalty=1.5,
num_beams=8,
top_p= 0.9,
top_k= 150,
do_sample= True,
early_stopping = True,
)
response = tokenizer.decode(outputs[0])
# 響應內容:
الذكاء الاصطناعي هو فرع من علوم الكمبيوتر اللي كيركز گاع على تطوير الآلات اللي قادرة تدير مهام اللي عادة خاصها ذكاء بشري، بحال التعرف على الأنماط، حل المشاكل، اتخاذ القرارات، وفهم اللغة الطبيعية. الذكاء الاصطناعي عندو إمكانية باش يغير بزاف كيفاش كنعيشو، نخدمو، ونتفاعلو مع بعضياتنا.
واحد من أهم التطبيقات ديال الذكاء الاصطناعي هو فالصحة. الذكاء الاصطناعي يقدر يعاون الطبة باش يشخصو الأمراض بدقة أكبر، يأوتوماتيزيو المهام الروتينية، ويحسنو نتائج المرضى. مثلا، الخوارزميات ديال الذكاء الاصطناعي تقدر تحلل الصور الطبية باش تكتاشف العلامات الحيوية اللي ممكن ما تكونش واضحة للفحص البشري. زيادة على هادشي، الذكاء الاصطناعي يقدر يعاون الأطباء باش يصاوبو خطط علاج مخصصة حسب الاحتياجات الخاصة ديال كل مريض.
بالإضافة للصحة، الذكاء الاصطناعي عندو إمكانية باش يغير الطريقة اللي كنتفاعلو بيها مع التكنولوجيا. مثلا، الذكاء الاصطناعي يقدر يعاون الشركات باش يحسنو العمليات ديالهم، يأوتوماتيزيو المهام الروتينية، ويحسنو تجربة الزبون. زيادة على هادشي، الذكاء الاصطناعي يقدر يعاون الفلاحة باش يزيدو الإنتاجية، ينقصو التكاليف، ويحسنو جودة المحاصيل.
فالختام، الذكاء الاصطناعي عندو إمكانية باش يغير بزاف كيفاش كنعيشو، نخدمو، ونتفاعلو مع بعضياتنا. من خلال تطوير أنظمة ذكاء اصطناعي متقدمة، نقدرو نحسنو الكفاءة، نحسنو جودة الحياة، ونخلقو عالم أحسن للأجيال الجاية. مع استمرار تطور الذكاء الاصطناعي، من المرجح أنه غادي يلعب دور أكثر أهمية فتشكيل مستقبل البشرية. فالنهاية، الذكاء الاصطناعي عندو إمكانية باش يغير بزاف كيفاش كنعيشو، نخدمو، ونتفاعلو مع بعضياتنا. ولكن، خاصنا نكونو واعيين بالمخاطر والتحديات المرتبطة بالذكاء الاصطناعي باش نستافدو منو بأحسن طريقة. فالنهاية، الذكاء الاصطناعي عندو إمكانية باش يغير بزاف كيفاش كنعيشو، نخدمو، ونتفاعلو مع بعضياتنا. ولكن، خاصنا نكونو واعيين بالمخاطر والتحديات المرتبطة بالذكاء الاصطناعي باش نستافدو منو بأحسن طريقة. فالنهاية، الذكاء الاصطناعي عندو إمكانية باش يغير بزاف كيفاش كنعيشو، نخدمو، ونتفاعلو مع بعضياتنا. ولكن، خاصنا نكونو واعيين بالمخاطر والتحديات المرتبطة بالذكاء الاصطناعي باش نستافدو منو بأحسن طريقة. فالنهاية، الذكاء الاصطناعي عندو إمكانية باش يغير بزاف كيفاش كنعيشو، نخدمو، ونتفاعلو مع بعضياتنا. ولكن، خاصنا نكونو واعيين بالمخاطر والتحديات المرتبطة بالذكاء الاصطناعي باش نستافدو منو بأحسن طريقة. فالنهاية، الذكاء الاصطناعي عندو إمكانية باش يغير بزاف كيفاش كنعيشو، نخدمو، ونتفاعلو مع بعضياتنا. ولكن، خاصنا نكونو واعيين بالمخاطر والتحديات المرتبطة بالذكاء الاصطناعي باش نستافدو منو بأحسن طريقة. فالنهاية، الذكاء الاصطناعي عندو إمكانية باش يغير بزاف كيفاش كنعيشو، نخدمو، ونتفاعلو مع بعضياتنا
✨ 主要特性
- 專注達裡賈語:首款專門為摩洛哥阿拉伯語方言訓練的語言模型。
- 高質量數據:使用精心策劃的1.55億個標記的數據集,數據均來自真實的摩洛哥語料源。
- 文化理解:能夠捕捉細微的文化背景和當地表達方式。
📦 數據集
訓練語料庫包含1.55億個純摩洛哥達裡賈語內容的標記,數據來源如下:
- 社交媒體對話
- 轉錄的口語內容
- 在線論壇和討論
- 當地新聞和媒體
- 用戶生成的內容
每個來源都經過仔細審查,以確保方言的真實呈現,並去除任何現代標準阿拉伯語(MSA)或其他阿拉伯方言的干擾。
📚 詳細文檔
模型詳情
屬性 | 詳情 |
---|---|
模型類型 | 基於Transformer的語言模型 |
參數數量 | 0.5B |
上下文窗口 | 2048個標記 |
訓練數據 | 1.55億個純達裡賈語內容的標記 |
應用場景
- 面向摩洛哥用戶的聊天機器人
- 達裡賈語內容生成
- 摩洛哥內容的文本分類
- 當地市場的情感分析
- 客戶服務自動化
- 達裡賈語使用者的教育工具
🔧 技術細節
未來工作
- 擴展到更大的模型規模
- 為達裡賈語創建評估基準
- 擴大訓練數據集
- 開發特定任務的微調版本
- 進行監督微調(SFT)訓練
📄 許可證
@misc{atlasia2025al-atlas-0.5B,
title={Al-Atlas: A Causal Language Model for Moroccan Darija},
author={Abdelaziz Bounhar},
year={2025},
howpublished={\url{https://huggingface.co/atlasia/Al-Atlas-0.5B/}},
organization={AtlasIA}
}
Phi 2 GGUF
其他
Phi-2是微軟開發的一個小型但強大的語言模型,具有27億參數,專注於高效推理和高質量文本生成。
大型語言模型 支持多種語言
P
TheBloke
41.5M
205
Roberta Large
MIT
基於掩碼語言建模目標預訓練的大型英語語言模型,採用改進的BERT訓練方法
大型語言模型 英語
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERT是BERT基礎模型的蒸餾版本,在保持相近性能的同時更輕量高效,適用於序列分類、標記分類等自然語言處理任務。
大型語言模型 英語
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instruct 是一個多語言大語言模型,針對多語言對話用例進行了優化,在常見的行業基準測試中表現優異。
大型語言模型 英語
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM-RoBERTa是基於100種語言的2.5TB過濾CommonCrawl數據預訓練的多語言模型,採用掩碼語言建模目標進行訓練。
大型語言模型 支持多種語言
X
FacebookAI
9.6M
664
Roberta Base
MIT
基於Transformer架構的英語預訓練模型,通過掩碼語言建模目標在海量文本上訓練,支持文本特徵提取和下游任務微調
大型語言模型 英語
R
FacebookAI
9.3M
488
Opt 125m
其他
OPT是由Meta AI發佈的開放預訓練Transformer語言模型套件,參數量從1.25億到1750億,旨在對標GPT-3系列性能,同時促進大規模語言模型的開放研究。
大型語言模型 英語
O
facebook
6.3M
198
1
基於transformers庫的預訓練模型,適用於多種NLP任務
大型語言模型
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1是Meta推出的多語言大語言模型系列,包含8B、70B和405B參數規模,支持8種語言和代碼生成,優化了多語言對話場景。
大型語言模型
Transformers 支持多種語言

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
T5基礎版是由Google開發的文本到文本轉換Transformer模型,參數規模2.2億,支持多語言NLP任務。
大型語言模型 支持多種語言
T
google-t5
5.4M
702
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98