Finetuned Cross Encoder L6 V2
这是一个基于cross-encoder/ms-marco-MiniLM-L6-v2微调的交叉编码器模型,主要用于文本重排序和语义搜索任务。
下载量 22
发布时间 : 5/13/2025
模型简介
该模型计算文本对的分数,可用于文本重排序和语义搜索,基于Sentence Transformers库训练。
模型特点
高效文本重排序
能够高效计算文本对的相似度分数,适用于重排序任务。
基于MiniLM架构
基于高效的MiniLM-L6-v2架构,在保持性能的同时减少计算资源需求。
优化的损失函数
使用FitMixinLoss进行训练,优化了模型的重排序性能。
模型能力
文本相似度计算
文本重排序
语义搜索
使用案例
信息检索
搜索结果重排序
对搜索引擎返回的结果进行重新排序,提高相关性。
在评估数据集上达到0.597的NDCG@10分数
问答系统
答案候选排序
对问答系统生成的多个候选答案进行相关性排序。
🚀 基于 cross-encoder/ms-marco-MiniLM-L6-v2 的交叉编码器
这是一个基于 cross-encoder/ms-marco-MiniLM-L6-v2 微调的 交叉编码器 模型,使用了 sentence-transformers 库。它可以计算文本对的得分,可用于文本重排序和语义搜索。
🚀 快速开始
本模型可用于计算文本对的得分,适用于文本重排序和语义搜索等任务。下面将为你介绍如何使用该模型。
✨ 主要特性
- 基于
cross-encoder/ms-marco-MiniLM-L6-v2
微调,可计算文本对得分。 - 适用于文本重排序和语义搜索任务。
📦 安装指南
首先,你需要安装 sentence-transformers
库:
pip install -U sentence-transformers
💻 使用示例
基础用法
from sentence_transformers import CrossEncoder
# 从 Hugging Face Hub 下载模型
model = CrossEncoder("CharlesPing/finetuned-cross-encoder-l6-v2")
# 获取文本对的得分
pairs = [
['‘Getting hung up on the exact nature of the records is interesting, and there’s lots of technical work that can be done there, but the main take-home response there is that the trends we’ve been seeing since the 1970s are continuing and have not paused in any way,’ he said.”', 'Rosenzweig also criticized the "waffling—encouraged by the NPOV policy—[which] means that it is hard to discern any overall interpretive stance in Wikipedia history".'],
['After the 9/11 terrorist attacks grounded commercial air traffic, "there was a temperature drop while the airplanes weren\'t flying, for the week afterwards."', 'Play media At 9:42\xa0a.m., the Federal Aviation Administration (FAA) grounded all civilian aircraft within the continental U.S., and civilian aircraft already in flight were told to land immediately.'],
['But the central message of the IPCC AR4, is confirmed by the peer reviewed literature.', 'Scientific consensus is normally achieved through communication at conferences, publication in the scientific literature, replication (reproducible results by others), and peer review.'],
['"Many people think the science of climate change is settled.', 'During his administration, the bridge from Filadelfia and Liberia was constructed, as was the Old National Theater.'],
['“Even if you could calculate some sort of meaningful global temperature statistic, the figure would be unimportant.', 'Quantitative information or data is based on quantities obtained using a quantifiable measurement process.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# 或者根据与单个文本的相似度对不同文本进行排序
ranks = model.rank(
'‘Getting hung up on the exact nature of the records is interesting, and there’s lots of technical work that can be done there, but the main take-home response there is that the trends we’ve been seeing since the 1970s are continuing and have not paused in any way,’ he said.”',
[
'Rosenzweig also criticized the "waffling—encouraged by the NPOV policy—[which] means that it is hard to discern any overall interpretive stance in Wikipedia history".',
'Play media At 9:42\xa0a.m., the Federal Aviation Administration (FAA) grounded all civilian aircraft within the continental U.S., and civilian aircraft already in flight were told to land immediately.',
'Scientific consensus is normally achieved through communication at conferences, publication in the scientific literature, replication (reproducible results by others), and peer review.',
'During his administration, the bridge from Filadelfia and Liberia was constructed, as was the Old National Theater.',
'Quantitative information or data is based on quantities obtained using a quantifiable measurement process.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
📚 详细文档
模型详情
模型描述
属性 | 详情 |
---|---|
模型类型 | 交叉编码器 |
基础模型 | cross-encoder/ms-marco-MiniLM-L6-v2 |
最大序列长度 | 512 个词元 |
输出标签数量 | 1 个标签 |
模型来源
- 文档:Sentence Transformers 文档
- 文档:交叉编码器文档
- 仓库:GitHub 上的 Sentence Transformers
- Hugging Face:Hugging Face 上的交叉编码器
评估
指标
交叉编码器重排序
- 数据集:
cross-rerank-dev-mixed-neg
- 使用
CrossEncoderRerankingEvaluator
进行评估,参数如下:{ "at_k": 10 }
指标 | 值 |
---|---|
map | 0.4873 |
mrr@10 | 0.4839 |
ndcg@10 | 0.5971 |
训练详情
训练数据集
未命名数据集
- 大小:22,258 个训练样本
- 列:
sentence_0
、sentence_1
和label
- 基于前 1000 个样本的近似统计信息:
| | sentence_0 | sentence_1 | label |
|------|------|------|------|
| 类型 | 字符串 | 字符串 | 浮点数 |
| 详情 |
- 最小长度:26 个字符
- 平均长度:121.91 个字符
- 最大长度:319 个字符
- 最小长度:36 个字符
- 平均长度:140.85 个字符
- 最大长度:573 个字符
- 最小值:0.0
- 平均值:0.16
- 最大值:1.0
- 样本:
| sentence_0 | sentence_1 | label |
|------|------|------|
|
‘Getting hung up on the exact nature of the records is interesting, and there’s lots of technical work that can be done there, but the main take-home response there is that the trends we’ve been seeing since the 1970s are continuing and have not paused in any way,’ he said.”
|Rosenzweig also criticized the "waffling—encouraged by the NPOV policy—[which] means that it is hard to discern any overall interpretive stance in Wikipedia history".
|1.0
| |After the 9/11 terrorist attacks grounded commercial air traffic, "there was a temperature drop while the airplanes weren't flying, for the week afterwards."
|Play media At 9:42 a.m., the Federal Aviation Administration (FAA) grounded all civilian aircraft within the continental U.S., and civilian aircraft already in flight were told to land immediately.
|1.0
| |But the central message of the IPCC AR4, is confirmed by the peer reviewed literature.
|Scientific consensus is normally achieved through communication at conferences, publication in the scientific literature, replication (reproducible results by others), and peer review.
|1.0
| - 损失函数:
FitMixinLoss
训练超参数
非默认超参数
eval_strategy
:按步数评估per_device_train_batch_size
:16per_device_eval_batch_size
:16
所有超参数
点击展开
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
训练日志
轮数 | 步数 | 训练损失 | cross-rerank-dev-mixed-neg_ndcg@10 |
---|---|---|---|
0.3592 | 500 | 0.4259 | 0.5154 |
0.7184 | 1000 | 0.3346 | 0.5497 |
1.0 | 1392 | - | 0.5640 |
1.0776 | 1500 | 0.3171 | 0.5660 |
1.4368 | 2000 | 0.2826 | 0.5669 |
1.7960 | 2500 | 0.281 | 0.5802 |
2.0 | 2784 | - | 0.5834 |
2.1552 | 3000 | 0.2553 | 0.5842 |
2.5144 | 3500 | 0.2326 | 0.5961 |
2.8736 | 4000 | 0.2408 | 0.5971 |
框架版本
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
🔧 技术细节
本模型基于 cross-encoder/ms-marco-MiniLM-L6-v2
微调,使用 sentence-transformers
库进行训练。训练过程中使用了特定的超参数和损失函数,以优化模型在文本重排序任务上的性能。
📄 许可证
文档中未提及相关许可证信息。
📖 引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98